scholarly journals Analysis of Swirling Flow on Cyclone Separator Using CFD to Reduce Particulate Matter of Diesel Engine

2019 ◽  
Vol 2 (1) ◽  
pp. 71-76
Author(s):  
S. Nurcholik ◽  
L. Adnyani ◽  
D. Sa’adiyah ◽  
L. Rahmah ◽  
R. Revari

Particulate matter (PM) is one of the component in flue gas of diesel engine. As one of air pollution, PM needs more attention, because its existence irritates respiratory. The using of cyclone as additional part of diesel engine, can reduce PM concentration before released to surrounding. However, the shape of cyclone affects the percentage of PM due to turbulence and length of track. In this paper, the prediction of swirling flow in different type of cyclone separator will be conducted by using Computational Fluid Dynamics (CFD). The analysis will focus on particle movement inside the cyclone separator and its turbulence phenomenon. There are four types of cyclone separator which will be observed: Perry’s method, Stairmand’s method, and the modification of each methods. All of these cyclone separator will have the same velocity inlet, and will be simulated using RNG k- model as the turbulence modelling. The simulation shows that the Stairmand’s method has the best turbulence and can collect most of PM.

2021 ◽  
Vol 11 (4) ◽  
pp. 520
Author(s):  
Emily R. Nordahl ◽  
Susheil Uthamaraj ◽  
Kendall D. Dennis ◽  
Alena Sejkorová ◽  
Aleš Hejčl ◽  
...  

Computational fluid dynamics (CFD) has grown as a tool to help understand the hemodynamic properties related to the rupture of cerebral aneurysms. Few of these studies deal specifically with aneurysm growth and most only use a single time instance within the aneurysm growth history. The present retrospective study investigated four patient-specific aneurysms, once at initial diagnosis and then at follow-up, to analyze hemodynamic and morphological changes. Aneurysm geometries were segmented via the medical image processing software Mimics. The geometries were meshed and a computational fluid dynamics (CFD) analysis was performed using ANSYS. Results showed that major geometry bulk growth occurred in areas of low wall shear stress (WSS). Wall shape remodeling near neck impingement regions occurred in areas with large gradients of WSS and oscillatory shear index. This study found that growth occurred in areas where low WSS was accompanied by high velocity gradients between the aneurysm wall and large swirling flow structures. A new finding was that all cases showed an increase in kinetic energy from the first time point to the second, and this change in kinetic energy seems correlated to the change in aneurysm volume.


2005 ◽  
Vol 498-499 ◽  
pp. 179-185
Author(s):  
A.F. Lacerda ◽  
Luiz Gustavo Martins Vieira ◽  
A.M. Nascimento ◽  
S.D. Nascimento ◽  
João Jorge Ribeiro Damasceno ◽  
...  

A two-dimensional fluidynamics model for turbulent flow of gas in cyclones is used to evaluate the importance of the anisotropic of the Reynolds stress components. This study presents consisted in to simulate through computational fluid dynamics (CFD) package the operation of the Lapple cyclone. Yields of velocity obtained starting from a model anisotropic of the Reynolds stress are compared with experimental data of the literature, as form of validating the results obtained through the use of the Computational fluid dynamics (Fluent). The experimental data of the axial and swirl velocities validate numeric results obtained by the model.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1285
Author(s):  
Sarah Letaïef ◽  
Pierre Camps ◽  
Thierry Poidras ◽  
Patrick Nicol ◽  
Delphine Bosch ◽  
...  

A test site located along a 12-lane motorway east of Montpellier, France, is used to evaluate the potential of biomagnetic monitoring on traffic-related particulate matter (PM) to parametrize a computational fluid dynamics (CFD) simulation of the local airflow. Two configurations were established on the site with three vegetated flat-top earth berms of a basic design, and a fourth one was located windward to the traffic roofed with a 4-m-high precast concrete wall. As a first step, PM deposition simultaneously on plant leaves, on low-cost passive artificial filters, and on soils was estimated from proxies supplied by magnetic and X-ray fluorescence measurements on both sides of the motorway. These latter revealed that traffic-related pollutants are present on soils samples highlighted with a clear fingerprint of combustion residues, and wears of breaks, vehicles, and highway equipment. Maximum PM accumulations were detected in the lee of the berm–wall combination, while no significant deposition was observed on both sides of the flat-top earth berms. These results are in line with measurements from PM µ-sensors operated by the regional state-approved air quality agency. Finally, we compared the experimental measurements with the outcomes of a computational fluid dynamics (CFD) modeling based on the Reynolds-Averaged Navier–Stokes (RANS) equations that consider the traffic-induced momentum and turbulence. The CFD modeling matches the experimental results by predicting a recirculated flow in the near wake of the berm–wall combination that enhances the PM concentration, whereas the flat-top berm geometry does not alter the pollutants’ transport and indeed contributes to their atmospheric dispersion.


2012 ◽  
Vol 532-533 ◽  
pp. 431-435
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo ◽  
Lei He

Honeycomb ceramic is the key component of the regenerative system. The numerical simulation was performed using FLUENT, a commercial computational fluid dynamics (CFD) code, to compare simulation results to the test data. The regenerative process of a honeycomb ceramic regenerator was simulated under different conditions. Experiments were carried out on honeycomb regenerators that are contained in a methane oxidation reactor. The calculated temperatures of flue gas inlet were compared with the ones measured. The tendency of the temperature is the same as the experiment.


Author(s):  
Jason Smith ◽  
Robert N. Eli

This paper reports on a laboratory experiment conducted more than 30 years ago (Eli, 1974, unpublished), and recent Computational Fluid Dynamics (CFD) investigations, focusing on the properties of a plane tangential jet produced by an apparatus called a “centrifugal nozzle.” The authors believe that the centrifugal nozzle has potential industrial applications in several areas related to fluid mixing and particulate matter suspension in mixing tanks. It is also believed that this experiment, or one similar, may provide data useful for benchmarking CFD models.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1414
Author(s):  
María José Suárez López ◽  
Laura García Expósito ◽  
Eduardo Blanco Marigorta ◽  
Eduardo Álvarez Álvarez ◽  
Antonio Navarro Manso ◽  
...  

Air pollution is one of the consequences of the industrial development, which causes a lot of health and environmental problems. For these reasons, the quality of the air is one of the major concerns of regional, national and European governments. All of them are developing strict normative to reduce the emissions of contaminants. The quality of the air can be analysed by means of numerical simulations. In this paper, a methodology based on Computational Fluid Dynamics (CFD) is described. This technique allows evaluating the dispersion of industrial-type air pollutants in a relatively large area, taking into account the orography, buildings and so on. Also, specific models are studied in order to consider the specific characteristics of the industrial contaminants and particles.


Author(s):  
Jeff Gibson ◽  
Michael Reader-Harris

Computational Fluid Dynamics (CFD) was used to compute the effect of two bends in perpendicular planes on the performance of 4-inch Venturi tubes with β = 0.4, 0.6 and 0.75 for water at a Reynolds number of 350,000 and at various distances from the bend. Two types of Venturi tubes were analysed, the first having a standard convergent angle of 21°, the second having a non-standard convergent angle of 10.5°. Good agreement with experiment was obtained. Swirling axisymmetric flows were computed to help interpret experimental data.


2013 ◽  
Vol 788 ◽  
pp. 228-232
Author(s):  
Zhuo Lun Cen ◽  
Ji Gang Zhao ◽  
Ben Xian Shen

Hydrocyclones provide an economic and efficient process of separation in many industries, but there has been little detailed understanding of the strong swirling flow prevailing inside the device, especially the complex inner vortex. This work presented a computational fluid dynamics (CFD) simulation to predict and to evaluate the effects of inlet velocity and the diameter of overflow tube on the inner vortex. The calculation was carried out using commercial CFD code Ansys Fluent 14.0. The results obtained demonstrates both an overlarge inlet velocity and a too small diameter of overflow tube lead to a severe backmixing at the head of hydrocyclone, moreover the latter results in a disorder and unstructured inner vortex.


Sign in / Sign up

Export Citation Format

Share Document