scholarly journals Inclined Magnetic Field of Non-uniform and Porous Medium Channel on Couple Stress Peristaltic Flow and application in medical treatment (Knee Arthritis)

Author(s):  
Liqaa Zeki Hummady ◽  
Iraq T. Abbas ◽  
Rana A. Mohammed

The present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.

2012 ◽  
Vol 12 (05) ◽  
pp. 1250088 ◽  
Author(s):  
DHARMENDRA TRIPATHI ◽  
O. ANWAR BÉG

This article studies the hydromagnetic peristaltic flow of couple stress fluids through the gap between two concentric channels containing a Darcian porous medium, with the inner channel being rigid. A sinusoidal wave propagates along the outer channel. Long wavelength and low Reynolds number assumptions are used. The effects of couple stress parameter, magnetic field, permeability, and the channel ratio width on pressure and frictional forces on the inner and outer channels are depicted graphically. Mechanical efficiency and trapping are also studied. Pressure diminishes with increasing coupling and permeability parameters whereas it increases with Hartmann number and channel width ratio. Applications of the model include transport of complex bio-waste fluids and magnetic field control of gastro-intestinal disorders.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 319
Author(s):  
V. Jagadeesh ◽  
S. Sreenadh ◽  
P. Lakshminarayana2

In this paper we have studied the effects of inclined magnetic field, porous medium and wall properties on the peristaltic transport of a Jeffry fluid in an inclined non-uniform channel. The basic governing equations are solved by using the infinite wave length and small Reynolds number assumptions. The analytical solutions have obtained for velocity and stream function. The variations in velocity for different values of important parameters have presented in graphs. The results are discussed for both uniform and non-uniform channels. 


2011 ◽  
Vol 04 (03) ◽  
pp. 365-378 ◽  
Author(s):  
G. C. SANKAD ◽  
G. RADHAKRISHNAMACHARYA

Peristaltic transport of an incompressible couple stress fluid in a two-dimensional uniform channel with wall effects and in the presence of magnetic field has been studied. Using long wavelength approximation with low Reynolds number and dynamic boundary conditions, analytical expressions have been derived for velocity and stream function and the effects of pertinent parameters on these flow variables have been studied. The numerical results show that the time average velocity decreases with viscous damping force. Further, it has been observed that trapping occurs and the size of the trapped bolus decreases with Hartman number.


2017 ◽  
Vol 14 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Ajaz Ahmad Dar ◽  
K. Elangovan

Purpose This paper aims to intend for investigating the influence of an inclined magnetic field on the peristaltic flow of a couple stress fluid through an inclined channel with heat and mass transfer. Design/methodology/approach Long wavelength and low Reynolds number methodology is actualized for simplifying the highly nonlinear equations. Mathematical expressions of axial velocity, pressure gradient and volume flow rate are obtained. Pressure rise, frictional force and pumping phenomenon are portrayed and symbolized graphically. Exact and numerical solutions have been carried out. The computed results are presented graphically for various embedded parameters. Temperature and concentration profile are also scrutinized and sketched. Findings Results from the current study concluded that the fluid motion can be enhanced by increasing the inclination of both the magnetic field and the channel. Originality/value The elemental characteristics of this analysis is a complete interpretation of the influence of couple stress parameter and inclination of magnetic field on the velocity, pressure gradient, pressure rise and frictional forces.


2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


2011 ◽  
Vol 66 (5) ◽  
pp. 304-310 ◽  
Author(s):  
Pardeep Kumar ◽  
Hari Mohan

The double-diffusive convection in a compressible couple-stress fluid layer heated and soluted from below through porous medium is considered in the presence of a uniform vertical magnetic field. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, stable solute gradient, magnetic field, and couple-stress postpone the onset of convection whereas medium permeability hastens the onset of convection. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and magnetic field introduce oscillatory modes in the system, which were non-existent in their absence. A condition for the system to be stable is obtained by using the Rayleigh-Ritz inequality. The sufficient conditions for the non-existence of overstability are also obtained.


Sign in / Sign up

Export Citation Format

Share Document