Plan-view TEM observation of a single-domain κ-Ga2O3 thin film grown on ε-GaFeO3 substrate using GaCl3 precursor by mist chemical vapor deposition

Author(s):  
Hiroyuki NISHINAKA ◽  
Osamu Ueda ◽  
Yusuke Ito ◽  
Noriaki IKENAGA ◽  
Noriyuki Hasuike ◽  
...  

Abstract We demonstrated the growth of a single-domain κ-Ga2O3 thin film on ε-GaFeO3 by using an organic-free compound as a precursor for mist chemical vapor deposition. X-ray diffraction analysis revealed that an 87-nm-thick κ-Ga2O3 thin film was grown almost coherently with slight lattice relaxation. The surface morphology of the κ-Ga2O3 thin film exhibited a step-terrace structure without island growth. Furthermore, plan-view TEM observations revealed that the κ-Ga2O3 thin film grown on ε-GaFeO3 had a single domain, whereas the previously reported κ-Ga2O3 thin film grown on AlN template had a domain structure.

2001 ◽  
Vol 680 ◽  
Author(s):  
P. Visconti ◽  
M. A. Reshchikov ◽  
F. Yun ◽  
K. M. Jones ◽  
H. Morkoç ◽  
...  

ABSTRACTProperties of GaN layers grown by metalorganic chemical vapor deposition (MOCVD) on c-plane of sapphire have been investigated using atomic force microscopy (AFM), wet etching for defect investigation, transmission electron microscopy (TEM), high-resolution X-ray diffraction, Hall effect measurements and low-temperature photoluminescence (PL). Tapping-mode AFM images of the as-grown samples showed atomically smooth surfaces (rms roughness ≍ 0.2 nm) consisting of terraces separated by about 3Å bi-layer steps. Hot H3PO4 chemical etching was used to produce hexagonal-shaped etch pits at the surface defect sites as revealed by AFM imaging. The obtained etch pit densities (9×108 - 2 ×109 cm−2) were in agreement with the dislocation density found by plan-view and cross-sectional TEM observations. The full-width at half-maximum (FWHM) of the X-ray diffraction rocking curve was about 4.8 and 3.9 arcmin for the symmetric (002) and asymmetric (104) directions, respectively. PL spectrum at 15 K demonstrated sharp peaks (FWHM ≍ 4 meV) in the excitonic region, which were attributed to free and bound excitons. The spectrum contained also weak PL bands with maxima at about 2.2, 2.9 and 3.27 eV, which have been attributed to three different acceptors.


Author(s):  
M. E. Twigg ◽  
E. D. Richmond ◽  
J. G. Pellegrino

For heteroepitaxial systems, such as silicon on sapphire (SOS), microtwins occur in significant numbers and are thought to contribute to strain relief in the silicon thin film. The size of this contribution can be assessed from TEM measurements, of the differential volume fraction of microtwins, dV/dν (the derivative of the microtwin volume V with respect to the film volume ν), for SOS grown by both chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).In a (001) silicon thin film subjected to compressive stress along the [100] axis , this stress can be relieved by four twinning systems: a/6[211]/( lll), a/6(21l]/(l1l), a/6[21l] /( l1l), and a/6(2ll)/(1ll).3 For the a/6[211]/(1ll) system, the glide of a single a/6[2ll] twinning partial dislocation draws the two halves of the crystal, separated by the microtwin, closer together by a/3.


1998 ◽  
Vol 508 ◽  
Author(s):  
A. Izumi ◽  
T. Ichise ◽  
H. Matsumura

AbstractSilicon nitride films prepared by low temperatures are widely applicable as gate insulator films of thin film transistors of liquid crystal displays. In this work, silicon nitride films are formed around 300 °C by deposition and direct nitridation methods in a catalytic chemical vapor deposition system. The properties of the silicon nitride films are investigated. It is found that, 1) the breakdown electric field is over 9MV/cm, 2) the surface state density is about 1011cm−2eV−1 are observed in the deposition films. These result shows the usefulness of the catalytic chemical vapor deposition silicon nitride films as gate insulator material for thin film transistors.


2012 ◽  
Vol 455-456 ◽  
pp. 935-938
Author(s):  
Hai Quan Wang

- TiC/C composite fibers were prepared by vapor phase titanizing of the regular carbon fibers via chemical vapor deposition (CVD). The carbon fibers were titanized from the surface of the fiber to the core. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were applied to characterize the morphology and structure of the TiC/C composite fibers. The influences of CVD reaction conditions such as temperature and reaction time on the TiC particle size and the thickness of the deposited layer were investigated. Higher temperature and longer time resulted in the growth of bigger size of the TiC crystal particles, and the particle uniformity was also decreased.


Sign in / Sign up

Export Citation Format

Share Document