scholarly journals Porovnání environmentálních dopadů různých typů jogurtových kelímků

Entecho ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 6-9
Author(s):  
Nikola Kráľová ◽  
Markéta Šerešová ◽  
Vladimír Kočí

Cílem práce bylo posoudit environmentální dopady různých typů zvolených jogurtových kelímků vyrobených z různých materiálů: z plastu, papíru, skla či z kompozitního materiálu. Environmentální dopady byly vyhodnoceny metodou posuzování životního cyklu (z angl. life cycle assessment, LCA). Výsledky práce ukazují, že skleněné a kompozitní obaly jsou horší než obaly plastové, s výjimkou kategorie dopadu Spotřeba fosilních surovin a humánní toxicita. Jako nejlepší vychází plastový obal s K3 dekorací (papír), který ve všech hodnocených kategoriích dopadu vykazuje nejlepší výsledky. V kategorii dopadu Klimatické změny se nejhůř umístil kompozitní obal a obal skleněný. Nejvíce ovlivněnou kategorií je Sladkovodní ekotoxicita, nejvyšší dopady v rámci této kategorie vykazuje obal skleněný a následně kompozitní. V rámci kategorie dopadu Ionizující záření má největší dopad skleněný obal následovaný obalem kompozitním. Na základě výsledků výzkumu bylo zjištěno, že hlavní příčinou dopadů plastových kelímků na životní prostředí je výroba PP granulátu, u skleněných obalů je to výroba samotného skla a v případě kompozitních obalů výroba kompozitního obalu. Abstract (en) The aim of the work was to assess the environmental impacts of different types of selected yoghurt cups made of different materials: plastic, paper, glass or composite material. Environmental impacts were assessed using the life cycle assessment (LCA) method. The results of the work show that glass and composite packaging is worse than plastic packaging except for the impact category Resource use (mineral and metals) and Human toxicity. The best packaging appears to be plastic packaging with K3 decoration (paper), which has the smallest impacts in all evaluated impact categories. In the impact category Climate change, composite packaging and glass packaging have the greatest impact. The most affected category is Freshwater ecotoxicity. The highest impacts within this category are shown by glass packaging and subsequently composite packaging. In the impact category Ionizing radiation, the greatest impact has a glass packaging, then a composite packaging. Based on the results, it was determined that the main cause of the impacts of plastic cups is the production of PP granulate. In the case of glass packaging, it is the production of the glass itself, and in the case of composite packaging, the production of the composite packaging.

2021 ◽  
Vol 13 (3) ◽  
pp. 1225
Author(s):  
Ajinkya Powar ◽  
Anne Perwuelz ◽  
Nemeshwaree Behary ◽  
Le Vinh Hoang ◽  
Thierry Aussenac ◽  
...  

Research approaches on the use of ecotechnologies like ozone assisted processes for the decolorization of textiles are being explored as against the conventional alkaline reductive process for the color stripping of the cotton textiles. The evaluation of these ecotechnologies must be performed to assess the environmental impacts. Partial “gate to gate” Life Cycle Assessment (LCA) was implemented to study the ozone based decolorization process of the reactive dyed cotton textiles. Experiments were performed to determine input and output data flows for decolorization treatment of reactive dyed cotton textile using the ozonation process. The functional unit was defined as “treatment of 40 g of reactive dyed cotton fabric to achieve more than 94% color stripping”. Generic and specific data bases were also used to determine flows, and International Life Cycle Data system (ILCD) method was selected to convert all flows into environmental impacts. The impact category “Water resource depletion” is the highest for all the ozonation processes as it has the greatest relative value after normalization amongst all the impact indicators. Electricity and Oxygen formation were found to be the major contributors to the environmental impacts. New experimental conditions have been studied to optimize the impacts.


Recycling ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 50
Author(s):  
Carmen Ferrara ◽  
Giovanni De Feo ◽  
Vincenza Picone

Due to the serious problem of plastic pollution in aquatic environment, many people reject plastic packaging in favour of glass containers which are considered more sustainable. To avoid misjudgements, the sustainability assessment of packaging alternatives should be carried out with a life cycle thinking approach. In this regard, the study presents a comparative Life Cycle Assessment (LCA) of two alternative packaging systems for drinking water: reusable glass bottles and polyethylene (PET) bottles. The case study was performed considering the real data of an Italian mineral water company that bottles and distributes both natural and sparkling water. The environmental impacts of the two packaging systems were estimated with the ReCiPe 2016 (H) evaluation method adopting both midpoint and endpoint approaches. The results showed that the PET bottle is the most sustainable alternative for natural water for many impact categories; while, in the case of sparkling water, the environmental impacts of the two packaging systems are similar and the most environmentally sound solution can vary depending on the impact category. The following are the most significant aspects of the analysis: (1) the number of reuses of a single glass bottle; (2) the distribution distance. Their variation can determine which packaging is the most sustainable. Therefore, a life cycle assessment approach is needed for each specific case.


2020 ◽  
Vol 12 (18) ◽  
pp. 7548 ◽  
Author(s):  
Christian Spreafico ◽  
Davide Russo

This paper provides an overview of the environmental impacts of different types of passenger transportation means (i.e., bicycles, motorcycles, cars, buses, trains, and airplanes). The method has been applied to the European scenario. The study was performed by using life cycle assessment in accordance with international standard ISO 14040/44 for assessing the CO2 eq., SO2, and PM10 of the transportation means by exploiting data (i.e., vehicles features and environmental impacts) from 24 scientific papers from the literature that have been manually analyzed. The functional unit is defined as the impact per 1 passenger over 1 km. The study identified that planes are the most impacting for CO2 eq. with up to 380 g/pkm, while cars are the most impacting for SO2 with up to 1.78 g/pkm and PM10 with 0.98 g/pkm. Electric and hybrid models proved to be significantly better than others, while buses are the most sustainable in general. Referring to the overall European scenario, cars constitute up to 95% of the overall impacts. By comparing some improvements for reducing the impacts, it emerged that the limitation of diesel cars along with the increase of buses and trains are the most effective. The provided outcomes may be useful for legislators, manufacturers, and users for favoring the choice of the transportation means in a more environmentally conscious way.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2019 ◽  
Vol 12 (1) ◽  
pp. 294 ◽  
Author(s):  
Zhuyuan Xue ◽  
Hongbo Liu ◽  
Qinxiao Zhang ◽  
Jingxin Wang ◽  
Jilin Fan ◽  
...  

The development of higher education has led to an increasing demand for campus buildings. To promote the sustainable development of campus buildings, this paper combines social willingness-to-pay (WTP) with the analytic hierarchy process (AHP) based on the characteristics of Chinese campus buildings to establish a life cycle assessment–life cycle cost (LCA–LCC) integrated model. Based on this model, this paper analyses the teaching building at a university in North China. The results show that the environmental impacts and economic costs are largest in the operation phase of the life cycle, mainly because of the use of electric energy. The environmental impacts and economic costs during the construction phase mainly come from the building material production process (BMPP); in this process, steel is the main source. Throughout the life cycle, abiotic depletion-fossil fuel potential (ADP fossil) and global warming potential (GWP) are the most prominent indexes. Further analysis shows that these two indexes should be the emphases of similar building assessments in the near future. Finally, this study offers suggestions for the proposed buildings and existing buildings based on the prominent problems found in the case study, with the aim to provide reference for the design, construction, and operation management of similar buildings.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 60 ◽  
Author(s):  
Mattias Gaglio ◽  
Elena Tamburini ◽  
Francesco Lucchesi ◽  
Vassilis Aschonitis ◽  
Anna Atti ◽  
...  

The need to reduce the environmental impacts of the food industry is increasing together with the dramatic increment of global food demand. Circulation strategies such as the exploitation of self-produced renewable energy sources can improve ecological performances of industrial processes. However, evidence is needed to demonstrate and characterize such environmental benefits. This study assessed the environmental performances of industrial processing of maize edible oil, whose energy provision is guaranteed by residues biomasses. A gate-to-gate Life Cycle Assessment (LCA) approach was applied for a large-size factory of Northern Italy to describe: (i) the environmental impacts related to industrial processing and (ii) the contribution of residue-based bioenergy to their mitigation, through the comparison with a reference system based on conventional energy. The results showed that oil refinement is the most impacting phase for almost all the considered impact categories. The use of residue-based bioenergy was found to drastically reduce the emissions for all the impact categories. Moreover, Cumulative Energy Demand analysis revealed that the use of biomass residues increased energy efficiency through a reduction of the total energy demand of the industrial process. The study demonstrates that the exploitation of residue-based bioenergy can be a sustainable solution to improve environmental performances of the food industry, while supporting circular economy.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5833
Author(s):  
Markéta Šerešová ◽  
Jiří Štefanica ◽  
Monika Vitvarová ◽  
Kristina Zakuciová ◽  
Petr Wolf ◽  
...  

As both the human population and living standards grow, so does the worldwide electricity demand. However, the power sector is also one of the biggest environmental polluters. Therefore, options are currently being sought aimed at reducing environmental impacts, one of the potential tools for which concerns the use of life cycle assessment. This study, therefore, focuses on the most commonly used nonrenewable (black coal, lignite, natural gas and nuclear) and renewable sources (wind, hydro and photovoltaic) in the Czech Republic in terms of their construction, operation, and decommissioning periods. Environmental impacts are assessed via the use of selected impact categories by way of product environmental footprint methodology. The results highlight the potential environmental impacts associated with electricity generation for each of the primary energy sources. Black coal and lignite power plants were found to contribute most to the global warming, resource use, energy carriers and respiratory inorganics categories. On the other hand, the impact on water depletion and resource use, mineral and metals categories were found to be most significantly affected by the production of electricity from photovoltaic power plants. Finally, it is proposed that the results be employed to design scenarios for the future energy mix.


2020 ◽  
Vol 32 (5) ◽  
pp. 2977-2995 ◽  
Author(s):  
S. Schade ◽  
T. Meier

Abstract Specific microalgae species are an adequate source of EPA and DHA and are able to provide a complete protein, which makes them highly interesting for human nutrition. However, microalgae cultivation has also been described to be energy intensive and environmentally unfavorable in pilot-scale reactors. Moreover, production in cold temperature zones has not been sufficiently investigated. In particular, the effects of tube materials and cultivation season length have rarely been previously investigated in the context of a comparative LCA of microalgae cultivation. A computational “top-down” model was conducted to calculate input flows for Nannochloropsis sp. and Phaeodactylum tricornutum cultivation in a hypothetical tubular photobioreactor. Cultivation processes were calculated according to detailed satellite climatic data for the chosen location in Central Germany. This model was applied to a set of different scenarios, including variations in photobioreactor material, tube diameter, microalgae species, and cultivation season length. Based on these data, a life cycle assessment (LCA) was performed following ISO standard 14040/44. The impact assessment comprised the global warming potential, acidification, eutrophication, cumulative energy demand, and water scarcity. The results showed that a long cultivation season in spring and fall was always preferable in terms of environmental impacts, although productivity decreased significantly due to the climatic preconditions. Acrylic glass as a tube material had higher environmental impacts than all other scenarios. The cultivation of an alternative microalgae species showed only marginal differences in the environmental impacts compared with the baseline scenario. Critical processes in all scenarios included the usage of hydrogen peroxide for the cleaning of the tubes, nitrogen fertilizer, and electricity for mixing, centrifugation, and drying. Microalgae cultivation in a tubular photobioreactor in a “cold-weather” climate for food is sustainable and could possibly be a complement to nutrients from other food groups. The added value of this study lies in the detailed description of a complex and flexible microalgae cultivation model. The new model introduced in this study can be applied to numerous other scenarios to evaluate photoautotrophic microalgae cultivation in tubular photobioreactors. Thus, it is possible to vary the facility location, seasons, scale, tube dimensions and material, microalgae species, nutrient inputs, and flow velocity. Moreover, single processes can easily be complemented or exchanged to further adjust the model individually, if, for instance, another downstream pathway is required.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


Sign in / Sign up

Export Citation Format

Share Document