scholarly journals Chemical Composition of Melaleuca Cajuputi Powell

Essential oil extracted from Melaleucagenus has been widely used worldwidefor many purposes. Most of the its has been reported as the source of phytochemical compound where mostly have anti-inflammatory, antiulcer, antioxidant, antimicrobial and insecticide properties. Thus, three objectives that have been highlighted in this study are (1) to extract essential oil (cajuput oil) from fresh leaves of MelaleucacajuputiPowell using simple steam distillation,(2) to determine the chemical components of MelaleucacajuputPowell essential oil using GCMS and (3) to compare the chemical compound and its percentage with the previous study.Results found that there were 41 chemical compounds that have been identified. The chemical compounds were monoterpenes such as α-terpinolene, α-pinene, sabinene, 4-terpineol and γ-terpinene. The highest chemical compounds found were caryophyllene (20.16%), α-terpinolene (17.0%),α-humulene (11.91%), βelemene (7.62%) and γ-terpinene (5.62%). In previous research, 1,8-cineole chemical compound was foundhowever, in this study a different chemical compound found, it was caryophyllene, this is due to different geographic area.As a conclusion, most of the compounds found was aromatic, antibacterial andinsecticide properties.

Author(s):  
Anne Carolina ◽  
Maman Maman

The aim of this research was to examine the larvicidal activity of essential oil (EO) extracted from nutmeg (Myristica fragrans Houtt) leaves and fruits by steam distillation, and to analyze its chemical compounds. The EO yield of nutmeg leaves and fruits collected from the same tree was 0.66% and 0.30%, respectively. Larvicidal tests with the EO were carried out against Aedes aegypti (L.) (Diptera: Culicidae). The concentrations of nutmeg EO used for the larvicidal assay were 50, 100, 150, 200, and 250 μg/mL. The results showed that fruit oil was more toxic than the leaf oil. LC50 values of leaf and fruit EOs were 133.8 and 110.1 µg/mL, respectively. The chromatogram of GC-MS showed that the chemical components in nutmeg leaf and fruit EOs were dominated by α-pinene, sabinene, β-pinene, delta-3-carene, limonene, β-phellandrene, α-terpinolene, linalool, safrole, croweacin, and myristicin.


Author(s):  
Miss. Patil Shivani Navnath

Abstract: The Presenace study investigation oil isolation form cyperus rotundus and the chemical composition of essential oil of root's of Cyprus rotundus.In india it's commonly known as nagarmotha.and it belongs to the family cyperacea.the major chemical components of this herb are essential oils.flavonoids, terpenoids, sesauiterpenes, cyproten, cyperene, aselinene, rotundene, valencene, cyperol, gurjunene, transcalamenenene, cad'Alene, cyperoutundone, mustskone, isocyperol, acyperone etc. Reserch studies have shown that it possesses various Pharmacological activity Such as diuretic,carmenative emmenagogue, anthelmintic, analgesic, anti-inflammatory, anti-dysentery, anti-rheumatic activities.an extensive review of the ancient traditional literature and madern research revealead that the drug has numerous therapeutic action. Several of which have been established scientifically, which may help the reserchers to set their minds for approaching the utility efficiency and potency of nagarmotha. Keywords: cyperus rotundus, cyprotene flavanoids nagarmotha.


2013 ◽  
Vol 781-784 ◽  
pp. 601-605
Author(s):  
En Hua Wang ◽  
Qiu Zhang Sang ◽  
Xiao Hong Yang

Objective: To study the lobular pheasant tail leaf volatile chemical composition. Methods: the extraction of volatile chemical composition lobular pheasant tail blades of steam distillation, gas chromatography - mass spectrometry method for the separation and identification of its composition and relative content. Results and conclusion: 41 chemical compounds were identified. The main chemical constituents of volatile oil seeTable 1.


2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


Author(s):  
Gabriela Mastrangelo Gonçalves ◽  
Víctor de Carvalho Martins ◽  
André Romero Henrique da Costa ◽  
Thayane Ferreira da Costa Fernandes ◽  
Sidney Pacheco ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1294
Author(s):  
Ahmed M. Abd-ElGawad ◽  
Abdelbaset M. Elgamal ◽  
Yasser A. EI-Amier ◽  
Tarik A. Mohamed ◽  
Abd El-Nasser G. El Gendy ◽  
...  

The integration of green natural chemical resources in agricultural, industrial, and pharmaceutical applications allures researchers and scientistic worldwide. Cleome amblyocarpa has been reported as an important medicinal plant. However, its essential oil (EO) has not been well studied; therefore, the present study aimed to characterize the chemical composition of the C. amblyocarpa, collected from Egypt, and assess the allelopathic, antioxidant, and anti-inflammatory activities of its EO. The EO of C. amblyocarpa was extracted by hydrodistillation and characterized via gas chromatography–mass spectrometry (GC-MS). The chemometric analysis of the EO composition of the present studied ecospecies and the other reported ecospecies was studied. The allelopathic activity of the EO was evaluated against the weed Dactyloctenium aegyptium. Additionally, antioxidant and anti-inflammatory activities were determined. Forty-eight compounds, with a prespondence of sesquiterpenes, were recorded. The major compounds were caryophyllene oxide (36.01%), hexahydrofarnesyl acetone (7.92%), alloaromadendrene epoxide (6.17%), myrtenyl acetate (5.73%), isoshyobunone (4.52%), shyobunol (4.19%), and trans-caryophyllene (3.45%). The chemometric analysis revealed inconsistency in the EO composition among various studied ecospecies, where it could be ascribed to the environmental and climatic conditions. The EO showed substantial allelopathic inhibitory activity against the germination, seedling root, and shoot growth of D. aegyptium, with IC50 values of 54.78, 57.10, and 74.07 mg L−1. Additionally, the EO showed strong antioxidant potentiality based on the IC50 values of 4.52 mg mL−1 compared to 2.11 mg mL−1 of the ascorbic acid as standard. Moreover, this oil showed significant anti-inflammation via the suppression of lipoxygenase (LOX) and cyclooxygenases (COX1, and COX2), along with membrane stabilization. Further study is recommended for analysis of the activity of pure authentic materials of the major compounds either singularly or in combination, as well as for evaluation of their mechanism(s) and modes of action as antioxidants or allelochemicals.


BioResources ◽  
2007 ◽  
Vol 2 (2) ◽  
pp. 265-269 ◽  
Author(s):  
M. Hakki Alma ◽  
Murat Ertaş ◽  
Siegfrie Nitz ◽  
Hubert Kollmannsberger

In this study, clove bud oil, which was cultivated in the Mediterranean region of Turkey, was provided from a private essential oil company in Turkey. Essential oil from clove (Syzygium aromaticum L.) was obtained from steam-distillation method, and its chemical composition was analyzed by GC and GC-MS. The results showed that the essential oils mainly contained about 87.00% eugenol, 8.01% eugenyl acetate and 3.56% β-Caryophyllene. The chemical composition of the Turkish clove bud oil was comparable to those of trees naturally grown in their native regions.


Author(s):  
Rini Yanti ◽  
Hermina Nurdiawati ◽  
Puji Wulandari ◽  
Yudi Pranoto ◽  
Muhammad Nur Cahyanto

Turmeric rhizomes are commonly used in the culinary, pharmaceutical, herbal medicine, and beverage industries. On the contrary, turmeric leaves are underutilized.  The aims of this study were to extract the essential oil from turmeric leaves, characterize the chemical composition of the oil, and determine its antifungal activities against aflatoxin-producing fungi. Steam distillation was used to extract the essential oil from turmeric leaves. The properties of the oil were identified using GC-MS. Antimicrobial activities against Aspergillus flavus and Aspergillus parasiticus were determined. Spores of the fungi were inoculated into potato dextrose agar plates supplemented with various quantities of turmeric leaves essential oil and incubated at 30°C for 7 days. The oil's primary constituents were α-phelandrene(46.70 %), followed by α-terpinolene (17.39 %), 1,8-cineole (8.78 %), benzene (4.24 %), and 2-β pinene (3.64 %). At low (<1%) concentrations, the oil delayed mycelia formation and at high concentrations it significantly inhibit fungal growth (at 1%) and completely inhibit colony formation (at 2%) Additionally, the result show that turmeric leaves oil can inhibited fungus growth at the lowest concentration (0.25 %) when compared to the control over a seven-day incubation period.


Sign in / Sign up

Export Citation Format

Share Document