scholarly journals Influence of Location and Thickness Variations on Guided Waves in Defective Carbon/Epoxy Plate

This paper addresses the effects of plate thickness and defect location on guided wave propagation in carbon/epoxy plates. A three-dimensional (3D) finite element model (FEM) of the plate was developed using MATLAB program codes, and simulated in Abaqus/Explicit. Referring to experimental ultrasonic C-scan images, the complex impact damage was modelled with irregular-shaped delamination and through-thickness matrix cracks. The simulated results show that a slower arrival time signal and amplitude drop of guided wave captured behind the defective region can be used as an indicator of the impact damage. A largOer scattering occurred when delamination was located closer to the plate surface. The extent of scattering gets larger, especially in the direction of 345o from the excitation point. It is also observed that the impact damage can still be detected through a line scan method across the impact damage, although the wave attenuation is greater in a thicker composite plate. By investigating these factors independently, the trends of the scattered guided ultrasonic waves can be classified and perhaps will revolutionize a smart non-destructive method for composite structure in the future.

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988107 ◽  
Author(s):  
Weibin Li ◽  
Chang Jiang ◽  
Xinlin Qing ◽  
Liangbing Liu ◽  
Mingxi Deng

Structural strength and integrity of composites can be considerably affected by the low-velocity impact damage due to the unique characteristics of composites, such as layering bonded by adhesive and the weakness to impact. For such damage, there is an urgent need to develop advanced nondestructive testing approaches. Despite the fact that the second harmonics could provide information sensitive to the structural health condition, the diminutive amplitude of the measured second-order harmonic guided wave still limits the applications of the second-harmonic generation–based nonlinear guided wave approach. Herein, laminated composites suffered from low-velocity impact are characterized by use of nonlinear guided waves. An enhancement in the signal-to-noise ratio for the measure of second harmonics is achieved by a phase-reversal method. Results obtained indicate a monotonic correlation between the impact-induced damage in composites and the relative acoustic nonlinear indicator of guided waves. The experimental finding in this study shows that the measure of second-order harmonic guided waves with a phase-reversal method can be a promising indicator to impact damage rendering in an improved and reliable manner.


2018 ◽  
Vol 7 (4.26) ◽  
pp. 175
Author(s):  
Noorfaten Asyikin Ibrahim ◽  
Bibi Intan Suraya Murat

This paper investigates the propagation of guided ultrasonic waves and the interaction with impact damage in composite plates using a full three-dimensional Finite Element analysis. Impact damage in the composite plate was modeled as rectangular- and T-shaped delaminations. In order to provide guidelines for extending the modeling of realistic multimode impact damage, the impact damage was modeled as a combination of the delamination and reduced materials properties. The information obtained from these methods was compared to the experimental results around the damage area for a validation. There was a reasonable similarity between the experimental and FE results. The FE simulations can effectively model the scattering characteristics of the A0 mode wave propagation in anisotropic composite plates. This suggests that the simplified and easy-to-implement FE model could be used to represent the complex impact damage in composite plates. This could be useful for the improvement of the FE modeling and performance of guided wave methods for the in-situ NDE of large composite structures. 


2020 ◽  
Vol 10 (2) ◽  
pp. 484 ◽  
Author(s):  
Hanfei Mei ◽  
Robin James ◽  
Mohammad Faisal Haider ◽  
Victor Giurgiutiu

This paper presents a new methodology for detecting various types of composite damage, such as delamination and impact damage, through the application of multimode guided waves. The basic idea is that various wave modes have different interactions with various types of composite damage. Using this method, selective excitations of pure-mode guided waves were achieved using adjustable angle beam transducers (ABTs). The tuning angles of various wave modes were calculated using Snell’s law applied to the theoretical dispersion curves of composite plates. Pitch–catch experiments were conducted on a 2-mm quasi-isotropic carbon fiber-reinforced polymer (CFRP) composite plate to validate the excitations of pure fundamental symmetric mode (S0) and shear horizontal mode (SH0). The generated pure S0 mode and SH0 mode were used to detect and separate the simulated delamination and actual impact damage. It was observed that S0 mode was only sensitive to the impact damage, while SH0 mode was sensitive to both simulated delamination and impact damage. The use of pure S0 and SH0 modes allowed for damage separation. In addition, the proposed method was applied to a 3-mm-thick quasi-isotropic CFRP composite plate using multimode guided wave detection to distinguish between delamination and impact damage. The experimental results demonstrated that the proposed method has a good capability to detect and separate various damage types in composite structures.


Author(s):  
Daniel Chew ◽  
Bernard Masserey ◽  
Paul Fromme

Abstract Adverse environmental conditions result in corrosion during the life cycle of marine structures such as pipelines, offshore oil platforms, and ships. Generalized corrosion leading to the loss of wall thickness can cause the degradation of the integrity, strength, and load bearing capacity of the structure. Nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high-frequency guided waves propagating along the structure. Using standard ultrasonic wedge transducers with single-sided access to the structure, specific high-frequency guided wave modes (overlap of both fundamental Lamb wave modes) were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depend on the thickness of the structure and were measured using a noncontact laser interferometer. Numerical simulations using a two-dimensional finite element model were performed to visualize and predict the guided wave propagation and energy transfer across the plate thickness. During laboratory experiments, the wall thickness was reduced uniformly by milling of one steel plate specimen. In a second step, wall thickness reduction was induced using accelerated corrosion for two mild steel plates. The corrosion damage was monitored based on the effect on the wave propagation and interference (beating effect) of the Lamb wave modes in the frequency domain. Good agreement of the measured beatlengths with theoretical predictions was achieved, and the sensitivity of the methodology was ascertained, showing that high-frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations.


Author(s):  
Z Abbasi ◽  
F Honarvar

In recent years, Higher Order Modes Cluster (HOMC) guided waves have been considered for ultrasonic testing of plates and pipes. HOMC guided waves consist of higher order Lamb wave modes that travel together as a single nondispersive wave packet. The objective of this paper is to investigate the effect of frequency-thickness value on the contribution of Lamb wave modes in an HOMC guided wave. This is an important issue that has not been thoroughly investigated before. The contribution of each Lamb wave mode in an HOMC guided wave is studied by using a two-dimensional finite element model. The level of contribution of various Lamb wave modes to the wave cluster is verified by using a 2D FFT analysis. The results show that by increasing the frequency-thickness value, the order of contributing modes in the HOMC wave packet increases. The number of modes that comprise a cluster also increases up to a specific frequency-thickness value and then it starts to decrease. Plotting of the cross-sectional displacement patterns along the HOMC guided wave paths confirms the shifting of dominant modes from lower to higher order modes with increase of frequency-thickness value. Experimental measurements conducted on a mild steel plate are used to verify the finite element simulations. The experimental results are found to be in good agreement with simulations and confirm the changes observed in the level of contribution of Lamb wave modes in a wave cluster by changing the frequency-thickness value.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Raja R. Katta ◽  
Andreas A. Polycarpou

A contact mechanics (CM) based model of a fixed-length rigid cylinder impacting a homogeneous elastic-plastic homogeneous body was developed and includes an improved method of estimating the residual depth after impact. The nonlinear elastic behavior during unloading was accounted for to develop an improved coefficient of restitution model. The impact model was applied to study a practical case of a cylindrical feature on the slider of a magnetic storage hard disk drive impacting the disk to predict various critical impact contact parameters. The CM model was validated using a plane strain finite element model and it was found that a cylindrical feature with a longer length results in a substantial alleviation of impact damage.


2013 ◽  
Vol 569-570 ◽  
pp. 25-32
Author(s):  
Dian Shi Feng ◽  
Francesco Aymerich

The paper describes the application of a 3D finite element model for prediction of impact induced damage in sandwich composites consisting of laminated skins bonded to a closed cell foam core. The major damage and fracture mechanisms typically developing in transversally loaded sandwich composites were simulated in the model. The model was implemented in the FE package ABAQUS/Explicit and used to predict the impact damage resistance of sandwich panels with different core densities, core thicknesses, and skins layups. Numerical results obtained by FE simulations were compared with experimental data and observations collected through impact tests carried out at various impact energies.


Abstract. Micro-damages such as pores, closed delamination/debonding and fiber/matrix cracks in carbon fiber reinforced plastics (CFRP) are vital factors towards the performance of composite structures, which could collapse if defects are not detected in advance. Nonlinear ultrasonic technologies, especially ones involving guided waves, have drawn increasing attention for their better sensitivity to early damages than linear acoustic ones. The combination of nonlinear acoustics and guided waves technique can promisingly provide considerable accuracy and efficiency for damage assessment and materials characterization. Herein, numerical simulations in terms of finite element method are conducted to investigate the feasibility of micro-damage detection in multi-layered CFRP plates using the second harmonic generation (SHG) of asymmetric Lamb guided wave mode. Contact acoustic nonlinearity (CAN) is introduced into the constitutive model of micro-damages in composites, which leads to the distinct SHG compared with material nonlinearity. The results suggest that the generated second order harmonics due to CAN could be received and adopted for early damage evaluation without matching the phase of the primary waves.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5443 ◽  
Author(s):  
Anurag Dhutti ◽  
Saiful Asmin Tumin ◽  
Wamadeva Balachandran ◽  
Jamil Kanfoud ◽  
Tat-Hean Gan

High-temperature (HT) ultrasonic transducers are of increasing interest for structural health monitoring (SHM) of structures operating in harsh environments. This article focuses on the development of an HT piezoelectric wafer active sensor (HT-PWAS) for SHM of HT pipelines using ultrasonic guided waves. The PWAS was fabricated using Y-cut gallium phosphate (GaPO4) to produce a torsional guided wave mode on pipes operating at temperatures up to 600 °C. A number of confidence-building tests on the PWAS were carried out. HT electromechanical impedance (EMI) spectroscopy was performed to characterise piezoelectric properties at elevated temperatures and over long periods of time (>1000 h). Laser Doppler vibrometry (LDV) was used to verify the modes of vibration. A finite element model of GaPO4 PWAS was developed to model the electromechanical behaviour of the PWAS and the effect of increasing temperatures, and it was validated using EMI and LDV experimental data. This study demonstrates the application of GaPO4 for guided-wave SHM of pipelines and presents a model that can be used to evaluate different transducer designs for HT applications.


2021 ◽  
Vol 11 (16) ◽  
pp. 7276
Author(s):  
Dilbag Singh ◽  
Mourad Bentahar ◽  
Charfeddine Mechri ◽  
Rachid El Guerjouma

The present paper deals with an effort to model impact damage in 3D-FE simulation. In this work, we studied the scattering behavior of an incident A0 guided wave mode propagating towards an impacted damaged zone created within a quasi-isotropic composite plate. Besides, barely visible impact damage of the desired energy was created and imaged using ultrasonic bulk waves in order to measure the size of the damage. The 3D-FE frequency domain model is then used to simulate the scattering of an incident guided wave at a frequency below an A1 cut-off with a wavelength comparable to the size of the damaged zone. The damage inside the plate is modeled as a conical-shaped geometry with decayed elastic stiffness properties. The model was first validated by comparing the directivity of the scattered fields for the A0 Lamb mode predicted numerically with the experimental measurements. The modeling of the impact zone with conical-shape geometry showed that the scattering directivity of the displacement field depends significantly on the size (depth and width) of the conical damage created during the point-impact of the composite with potential applications allowing the determination of the geometric characteristics of the impacted areas.


Sign in / Sign up

Export Citation Format

Share Document