scholarly journals Lightweight Secure and Reliable Authentication for Cluster Based WSN

Wireless sensor networks (WSNs) are distributed all over the globe and are widely used for physical collection of data sensed in its surrounding. Tiny, affordable, constrained battery power, information processing capability devices called sensor nodes, plays a crucial role in agriculture, army, industry, intelligent grid, health care, critical infrastructure, etc. WSNs are often exposed to types of attacks. Once a sensor is affected by adversaries, the sensor's data materials become non- protective and intercepted by the enemy. In this paper we propose a lightweight polynomial secrete key (LWPK) sharing mechanism for secure hierarchal cluster based communication. LWPK is built on elliptical curve cryptography by exchanging symmetric keys to secure data transmission. Set of tests is carried on discrete event simulation tool and simulation results achieves better performance in terms of communication overhead, packet delivery ratio, end to end delay and network lifetime

Wireless Sensor Network (WSN) is developed extremely because of their low installation cost and various applications. WSN has compact and inexpensive sensor nodes for monitoring the physical environment. WSNs are susceptible to many attacks (e.g. malicious nodes) because of its distinct characteristics. The performance of node and network is affected by the malicious nodes. Moreover, the communication among the sensor nodes also required to be secured for preventing the data from the hackers. In this paper, the architecture of the WSN is generated by using the Fuzzy-C-Means clustering (FCM). Then the detection of the malicious nodes is performed by using the Acknowledgement Scheme (AS). This AS is integrated in the Ant Colony Optimization (ACO) based routing for avoiding the malicious nodes while generating the route from the source to the Base Station (BS). Then the Hybrid Encryption Algorithm (HEA) is used for performing the secure data transmission through the network and this proposed method is named as HEA-AS. The performance of the HEA-AS method is evaluated in terms of End to End Delay (EED), network lifetime, throughput, Packet Delivery Ratio (PDR) and Packet Loss Ratio (PLR). The proposed HEA-AS method is compared with the existing method called as CTCM to evaluate the effectiveness of the HEA-AS method.


2021 ◽  
Author(s):  
Putty Srivi ◽  
Lavadya Nirmala Devi

Abstract Wireless Sensor Networks (WSN) are self-possessed of the devices that are capable of actuating/sensing, processing, and communicating. This is employed for enhancing the day-to-day life, moreover secure data transmission was regarded as the major challenging aspect for the deployment of data. Data dissemination is a crucial in the complex communications framework for transferring messages for any given condition on the network. The dilemma of fixing the safest efficient route was a tedious issue. Hence the secure and most reliable way will give the appropriate solution for the routing issues. Here in this paper the Trust based energy efficient route path identification by Multi-faceted biologically-inspired probabilistic Cuckoo search Node optimization algorithm (TEERP-MFBPCS)is employed to find the efficient safest route within a short period. After seeing the efficient route, the node can be distinguished upon the traffic and security. Then in the selected route, the nodal distance can be calculated through applying weighted-biased end-to-end delay-based approach for traffic analysis. Finally, the intrusion node can be detected and the performance analysis is carried.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750043 ◽  
Author(s):  
Ching-Han Chen ◽  
Ming-Yi Lin ◽  
Wen-Hung Lin

Wireless sensor networks (WSNs) represent a promising solution in the fields of the Internet of Things (IoT) and machine-to-machine networks for smart home applications. However, to feasibly deploy wireless sensor devices in a smart home environment, four key requirements must be satisfied: stability, compatibility, reliability routing, and performance and power balance. In this study, we focus on the unreliability problem of the IEEE 802.15.4 WSN medium access control (MAC), which is caused by the contention-based MAC protocol used for channel access. This problem results in a low packet delivery ratio, particularly in a smart home network with only a few sensor nodes. In this paper, we first propose a lightweight WSN protocol for a smart home or an intelligent building, thus replacing the IEEE 802.15.4 protocol, which is highly complex and has a low packet delivery ratio. Subsequently, we describe the development of a discrete event system model for the WSN by using a GRAFCET and propose a development platform based on a reconfigurable FPGA for reducing fabrication cost and time. Finally, a prototype WSN controller ASIC chip without an extra CPU and with our proposed lightweight MAC was developed and tested. It enhanced the packet delivery ratio by up to 100%.


2019 ◽  
Vol 8 (2) ◽  
pp. 1727-1731 ◽  

WSN having several major issues to deliver information from source to sink. Such that secure data transmission, energy consumption, balancing the load and fault tolerance will be the major tasks. In the WSN, one node communicates with its neighbour nodes with limited energy source. So if any node does not work properly or become faulty nodes, which have less initial energy level, bandwidth to communicate with faulty nodes. Hence there is a need of system which can overcome with fault and give the reliable communication. Fault may also occur due to the dislocation of sensor nodes, battery depletion or instability of transmission medium.This proposed work will identify the faulty nodes and calculate the end to end delay as well as residual energy. Hence a reliable communication for all nodes in the WSN can be attained.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Hwanseok Yang

MANET is utilized in many fields because of its advantage in quickly establishing networks. The network will perform well if mobile nodes trust each other and act cooperatively. However, dynamic topology characteristics and frequent connection failures by the movement of nodes make routing difficult and cause vulnerability to be easily exposed. Therefore, the routing provided in the MANET should have security features that can reduce the damage to various attacks. For this, in this paper, it is proposed for a trust evaluation method of nodes using cluster structure and a secure data transmission technique through key exchange without CA. The proposed technique adopted a hierarchical structure to enhance the efficiency of the reliability evaluation of nodes. The reliability measurement reflects the quality of packets as well as the number of packets and the measured reliability is maintained by the trust management node. The integrity of the data transmission is improved through key exchange without CA between the nodes. In order to increase the efficiency of routing, anomaly nodes are detected by DSN checking of nodes that generate excessive traffic on the path when data is transmitted. The proposed technique in this paper can maintain stably the network performance even in the presence of malicious nodes because it ensures reliability evaluation for nodes and the path setting between nodes and secure data transmission. The superior performance of the proposed trust-based model security routing technique was confirmed through comparative experiments for packet delivery ratio, end-to-end delay time, the number of control packets, network throughput, and average path length.


Author(s):  
S. Nagavalli ◽  
G. Ramachandran

<p>The compressive detecting based information accumulation accomplishes with high exactness in information recuperation from less inspection which is available in sensor nodes. In this manner, the existing methods available in the literature diminish the information gathering cost and delays the existence cycle of WSNs. In this paper, a strong achievable security model for sensor network applications was initially proposed. At that point, a secure data collection conspire was displayed based on compressive detecting, which improves the information protection by the asymmetric semi-homomorphic encryption scheme, and decreases the calculation cost by inadequate compressive grid. In this case, particularly the asymmetric mechanism decreases the trouble of mystery key circulation and administration. The proposed homomorphic encryption permits the in-arrange accumulation in cipher domain, and in this manner improves the security and accomplishes the adjustment in system stack. Further, this paper focuses on estimating various network performances such as the calculation cost and correspondence cost, which remunerates the expanding cost caused by the homomorphic encryption. A real time validation on the proposed encryption scheme using AVISPA was additionally performed and the results are satisfactory.</p>


2021 ◽  
Author(s):  
Udayakumar Allimuthu ◽  
K Mahalakshmi

Abstract MANET (Mobile Ad-hoc Networks) are distributed or delegated away from a central server, authoritative location of wireless networks that communicate without pre-existing structure. Ad-hoc networks are compromising the many types of attacks and routing. In MANET, the routing plays a vital role in terms of packets interaction and data transmission. Due to decentralized control, the MANET data transmission becomes insecure because of dispersed routing on the mobile ad-hoc nodes. Since the efficient route on MANET only controls the packets and does not simplify the route between the source to the destination, the maintenance of route interaction becomes a crucial process. Maintain effective data transactions over the MANET network, and it is essential to improve the route and locate the attacker. Nevertheless, MANET allows for route interaction against security threads. In this research article, four processing schemes are suggested to preserve the security measures against routing protocols. Especially in node communication, the rushing attacker has a significant impact on packet-based data transmission in MANET. Also, for this research, an Attacker detection automation of the Bees Colony Optimization (ADABCP) method is used, as a result of which the desired result is brought about in the effective attacker detection on the routing process. Moreover, the proposed Hybrid Random Late Detection (HRLD) routing protocol manages the MANET routing and overcomes the MANET congestion communication. The Swift Implicit Response Round Trip Time (SIRT) mechanism is generated by the Route Finding Manipulation (RFM) to enhance the performance. This RFM scheme helps to find the optimal routing in a secured manner. The proposed (SIRT-ADABCP-HRLD) approach was compared to the existing ESCT, ZRDM-LFPM, and ENM-LAC approaches, found to have improved by routing and data transmission. Compared to the conventional method, the method mentioned above achieves a better ratio for the end-to-end delay, communication overhead, packet delivery ratio, network lifetime, and energy consumption.


2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Sam Banani ◽  
Surapa Thiemjarus ◽  
Kitti Wongthavarawat ◽  
Nattapong Ounanong

Pervasive sensing with Body Sensor Networks (BSNs) is a promising technology for continuous health monitoring. Since the sensor nodes are resource-limited, on-node processing and advertisement of digested information via BLE beacon is a promising technique that can enable a node gateway to communicate with more sensor nodes and extend the sensor node’s lifetime before requiring recharging. This study proposes a Dynamic Light-weight Symmetric (DLS) encryption algorithm designed and developed to address the challenges in data protection and real-time secure data transmission via message advertisement. The algorithm uses a unique temporal encryption key to encrypt each transmitting packet with a simple function such as XOR. With small additional overhead on computational resources, DLS can significantly enhance security over existing baseline encryption algorithms. To evaluate its performance, the algorithm was utilized on beacon data encryption over advertising channels. The experiments demonstrated the use of the DLS encryption algorithm on top of various light-weight symmetric encryption algorithms (i.e., TEA, XTEA, PRESENT) and a MD5 hash function. The experimental results show that DLS can achieve acceptable results for avalanche effect, key sensitivity, and randomness in ciphertexts with a marginal increase in the resource usage. The proposed DLS encryption algorithm is suitable for implementation at the application layer, is light and energy efficient, reduces/removes the need for secret key exchange between sensor nodes and the server, is applicable to dynamic message size, and also protects against attacks such as known plaintext attack, brute-force attack, replaying attack, and differential attack.


Author(s):  
Priti Maratha ◽  
Kapil

Background: Despite so many constraints, the limited battery power of the sensor nodes is the core issue in Wireless Sensor Networks. This compels how to extend the lifetime of the network as long as possible. One of the ways to solve the problem is to balance the relay traffic load to extend the lifetime. Objective:In this paper, a load balancing algorithm is suggested that selects the best possible relay node so that uniform consumption of the battery power of the sensor nodes can be ensured. Methods: After random deployment, sensor nodes collect information about their neighbors and their expected load. The selection of new next hop starts from maximum hop count. Next hop of the nodes having a single parent is set first. Remaining nodes select their next hop in the non-increasing order of their load. Result: Simulation results verify that packet delivery ratio for proposed work up to 50% till 72% and no nodes getting dead till 48% of total time duration while for others, nodes start getting dead around 36% of total time duration. Also, it is proved that the solution obtained by proposed work can be at most 1.5 times imbalanced as compared to the optimal solution which implies our solution is quite near to the optimal one. Conclusion: Load balancing done in our work has shown more positive results in comparison to others in terms of network lifetime and first node death and which is also verified with F-test with α-value to be 0.05.


Sign in / Sign up

Export Citation Format

Share Document