scholarly journals Design and Implementation of FFT IP using Pipelined Hybrid Adder and Distributed Arithmetic Based Complex Multiplier

In current inventive technology, latency, power and area are the crucial parameters to outline any kind of the algorithm on FPGA. The fundamental tool used for DSP applications is Fast Fourier Transform. FFT plays a vital role in acquiring the signal characteristics with least use of carrying out parameters. The adder plays an utmost importance. To make the best possible adder design regarding delay and area, various works have been proposed before. In proposed system, a combination different sub adders like Carry Look ahead adder (CLA), Ripple carry adder (RCA), and Carry save adder (CSA) is proposed. This reduces the delay and area but also increases the speed. The hybrid adders is proposed to represent FFT architecture inplace of conventional adders. Hybrid adder will act as a complex adder. Speed multipliers are fundamental parts of DSP systems. Multipliers are complex process and consumes more time. In order to lower the complexity multiplication, various multiplier less method are introduced. An efficient DA based complex multiplier is proposed, inplace of regular multiplier. The pipelining technique is applied only to hybrid adder. The design of Radix-2 FFT for 8 point of FFT, 1024 point of FFT is done, programmed using Verilog language. Using Xilinx 14.5i tool with Spartan 6 kit, Simulation is achieved.

Author(s):  
K Srivalli ◽  
Medha G H ◽  
Meghna K P ◽  
Mohan Kumar A ◽  
Darshan Halliyavar

Adders play a vital role in the design of a digital system using VLSI (Very Large Scale Integration) technique. Adders are the basic building block of ALU (Arithmetic Logic Unit) which is an important component of a processor. In this paper we are comparing and analyzing the performance parameters of basic adders like Ripple Carry Adder, Carry Select Adder, Carry Look Ahead Adder, Parallel Prefix Adder along with sparse adder. The above mentioned adders are implemented using 90nm technology in Xilinx ISE 14.7 Suite.


2018 ◽  
Author(s):  
Steve Wang ◽  
Jim McGinn ◽  
Peter Tvarozek ◽  
Amir Weiss

Abstract Secondary electron detector (SED) plays a vital role in a focused ion beam (FIB) system. A successful circuit edit requires a good effective detector. Novel approach is presented in this paper to improve the performance of such a detector, making circuit altering for the most advanced integrated circuit (IC) possible.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 828
Author(s):  
Aleksandra Skalska ◽  
Elzbieta Wolny ◽  
Manfred Beckmann ◽  
John H. Doonan ◽  
Robert Hasterok ◽  
...  

Seed germination is a complex process during which a mature seed resumes metabolic activity to prepare for seedling growth. In this study, we performed a comparative metabolomic analysis of the embryo and endosperm using the community standard lines of three annual Brachypodium species, i.e., B. distachyon (Bd) and B. stacei (Bs) and their natural allotetraploid B. hybridum (BdBs) that has wider ecological range than the other two species. We explored how far the metabolomic impact of allotetraploidization would be observable as over-lapping changes at 4, 12, and 24 h after imbibition (HAI) with water when germination was initiated. Metabolic changes during germination were more prominent in Brachypodium embryos than in the endosperm. The embryo and endosperm metabolomes of Bs and BdBs were similar, and those of Bd were distinctive. The Bs and BdBs embryos showed increased levels of sugars and the tricarboxylic acid cycle compared to Bd, which could have been indicative of better nutrient mobilization from the endosperm. Bs and BdBs also showed higher oxalate levels that could aid nutrient transfer through altered cellular events. In Brachypodium endosperm, the thick cell wall, in addition to starch, has been suggested to be a source of nutrients to the embryo. Metabolites indicative of sugar metabolism in the endosperm of all three species were not prominent, suggesting that mobilization mostly occurred prior to 4 HAI. Hydroxycinnamic and monolignol changes in Bs and BdBs were consistent with cell wall remodeling that arose following the release of nutrients to the respective embryos. Amino acid changes in both the embryo and endosperm were broadly consistent across the species. Taking our data together, the formation of BdBs may have maintained much of the Bs metabolome in both the embryo and endosperm during the early stages of germination. In the embryo, this conserved Bs metabolome appeared to include an elevated sugar metabolism that played a vital role in germination. If these observations are confirmed in the future with more Brachypodium accessions, it would substantiate the dominance of the Bs metabolome in BdBs allotetraploidization and the use of metabolomics to suggest important adaptive changes.


High-performance VLSI systems are essential in real-time applications, in order to increase the performance of the VLSI systems, an approximate computing technique is followed where the performance of the circuit is enhanced by trading off it with a slight loss in the accuracy. These approximate circuits are used in error-tolerant applications, where output need not be accurate. This paper concentrates mainly on approximate adders, as they are major building blocks of DSP systems. The analysis of the Lower-part OR Adder for 4-bit addition and comparison of it with the precise adder i.e., Ripple Carry Adder using the mentor graphics tool in 90 nm CMOS technology are presented in this paper. Our experimental results show that there is 17%-70% savings in power dissipation, 4%-32% saving in the area, and 19%-84% savings in time due to approximate adder. As the LOA-2 and LOA-3 are performing optimally these two adders can be used for error-tolerant applications and based on the requirement LOA-2 or LOA-3 can be selected.


2013 ◽  
Vol 756-759 ◽  
pp. 4207-4211
Author(s):  
Bo Qu

This paper describes the design and implementation of SD card driver and tiny file system for multi-process micro-kernel embedded operating system on ARM in technical details, including structure of device driver, key techniques of designing SD card driver, architecture of the tiny file system, a brief description of its designing and a demo example. The SD card driver and tiny FS are implemented with GNU tool chain by the author of this paper. Practice proves that the system can be used for not only embedded application developments but also related curriculum teaching.


Sign in / Sign up

Export Citation Format

Share Document