scholarly journals Optimization of Base Catalysts for Biodiesel Production from Jatropha curcas oil

Rapid Industrialization has led to a drastic decline in fossil fuels giving rise to the need for environment-friendly biodiesel to fulfill the industrial appetite. Biodiesel from Jatropha curcas has significant potential for being an alternative fuel. The type of catalyst used for the production of biodiesel determines its fuel properties and is considered as a factor affecting its yield. The main objective of the current research work was to compare biodiesel properties obtained from the homogeneous and heterogeneous base catalyst. The properties were compared with ASTM standardized fuel properties to validate its potential as a replacement for diesel. In this study, the base-catalyzed transesterification process was used as a method to produce biodiesel from Jatropha curcas oil. KOH and CaO were used as homogenous and heterogeneous base catalysts. The biodiesel thus obtained is subjected to various characterization techniques such as acid number, fire point, flash point, cloud point, pour point, and also were checked for fluid characteristics like density and specific gravity. The results obtained (Example: Fire point: 126, Specific gravity: 0.87) using KOH catalyst were promising as the values were in line with ASTM standard. Therefore, the major outcome of this research work is that a systematic comparison between two different catalysts has been carried out and it has been observed that KOH is an optimum catalyst that is economical and can be scaled up to produce maximum yield. This process can be considered as a zero-waste process as the by-product (glycerin) can further be considered as a raw material to produce commercial-grade products like bioplastics and soap. The important future prospects of this research work is that., as novel methods are taking centre stage to produce biodiesel through environmentally and economically acceptable processes., the jatropha-based biodiesel using effective base catalyst (KOH) through transesterification process will be taking a centre stage as it is found to be much safer fuel than diesel because of its higher flash point and fire point, decreases the dependence on imported petroleum and increases indigenous energy sufficiency

2013 ◽  
Vol 291-294 ◽  
pp. 207-211
Author(s):  
Xue Jun Liu ◽  
Hai Yan Zhang ◽  
Ning Ai ◽  
Mei Zhen Lu ◽  
Yu Min Li ◽  
...  

The acid value of jatropha curcas oil is 9.41mgKOH/g. The most of fatty acids should be removed if base catalysts are adopted to catalyze the transesterification reaction for biodiesel production in case of soap formation. In this study, methanol and ethanol were adopted to extract the fatty acids in jatropha curcas oil. Then, it was catalyzed by calcium methoxide for biodiesel production. The extracted fatty acids can be used to produce biodiesel at supercritical or sulfuric acid conditions. The results indicated that the acid value of jatropha curcas oil decrease to 0.31 mgKOH/g from 9.41 mgKOH/g using ethanol extraction for 3 times at 25°C. The biodiesel yield exceeded 96% using solid base catalyst. The advantages of methanol and ethanol extractions are low oil loss and high biodiesel yield.


2016 ◽  
Vol 9 (1) ◽  
pp. 50-55
Author(s):  
Saibun Sitorus

The research about utilization ash of coconut husk as source of base catalyst in aplication for reaction of transesterification from Jatropha curcas oil has been researched. Content of base compound in coconut husk ash was analyzed by AAS and acidy alkalimetry. The base catalyst was extracted using methanol, for transesterification reaction of Jatropha curcas oil. This method of biodiesel production by transesterification process used coconut husk ash catalyst by weight variation as much as 2%, 4%, 6%, 8% and 10% (w/w). Analysis of the quality of biodiesel is done with quality parameters acid number, iodine number, density, viscosity and water content in accordance with SNI 04-7182-2006 standards. The result of the research showed that potassium concentration as carbonat salt in the ash of coconut husk was 17,4% (w/w) and the conversion of biodiesel obtained from each catalyst in a row is 43,62%; 78,45%; 76,22%; 75,69% and 63,27% (w/w). Biodiesel optimum results obtained with the addition of the catalyst are 4% with density values of 0.86 (g / mL), the viscosity value of 3.23 (cSt), the value of water content 0.0352%, 0.12 acid number (mg KOH / g) and iodine number of 8.23 (g I2 / 100 g).The research about utilization ash of coconut husk as source of base catalyst in aplication for reaction of transesterification from Jatropha curcas oil has been researched. Content of base compound in coconut husk ash was analyzed by AAS and acidy alkalimetry. The base catalyst was extracted using methanol, for transesterification reaction of Jatropha curcas oil. This method of biodiesel production by transesterification process used coconut husk ash catalyst by weight variation as much as 2%, 4%, 6%, 8% and 10% (w/w). Analysis of the quality of biodiesel is done with quality parameters acid number, iodine number, density, viscosity and water content in accordance with SNI 04-7182-2006 standards. The result of the research showed that potassium concentration as carbonat salt in the ash of coconut husk was 17,4% (w/w) and the conversion of biodiesel obtained from each catalyst in a row is 43,62%; 78,45%; 76,22%; 75,69% and 63,27% (w/w). Biodiesel optimum results obtained with the addition of the catalyst are 4% with density values of 0.86 (g / mL), the viscosity value of 3.23 (cSt), the value of water content 0.0352%, 0.12 acid number (mg KOH / g) and iodine number of 8.23 (g I2 / 100 g).ABSTRAKPenelitian tentang pemanfaatan abu sabut kelapa sebagai sumber katalis basa pada aplikasi reaksi transesterifikasi minyak biji jarak pagar (Jatropha curcas. L) telah dilakukan. Karakterisasi kadar basa dalam sabut kelapa dilakukan dengan AAS dan alkalinitas. Katalis basa diperoleh dengan pengadukan abu sabut kelapa dalam metanol dan selanjutnya digunakan untuk reaksi transesterifikasi minyak biji jarak pagar (Jatropha curcas. L). Metode pembuatan biodiesel ini dengan transesterifikasi menggunakan katalis abu sabut kelapa dengan variasi berat sebanyak 2%, 4%, 5%, 6%, 8% dan 10% (b/b). Analisis kualitas dari biodiesel dilakukan dengan parameter mutu bilangan asam, bilangan iod, densitas, viskositas dan kadar air sesuai dengan standar SNI 04-7182-2006. Hasil penelitian menunjukkan bahwa kadar kalium dalam bentuk kalium karbonat dalam abu sabut kelapa sebesar 17,4% (b/b) dan konversi biodiesel yang diperoleh dari masing masing katalis berturut-turut adalah 43,62%; 78,45%; 76,22%; 75,69% dan 63,27% (b/b). Hasil optimum biodiesel diperoleh dengan penambahan katalis 4% dengan nilai densitas 0,86 (g/mL), nilai viskositas 3,23 (cSt), nilai kadar air 0,0352%, bilangan asam 0,12 (mg KOH/g) dan bilangan iod sebesar 8,23 (g I2/100 g). Kata kunci :    Abu sabut kelapa, biodiesel, transesterifikasi, minyak biji jarak pagar(Jatropha curcas. L)


2019 ◽  
Vol 3 (1) ◽  
pp. 59-64
Author(s):  
Ravindra Verma ◽  
Dinesh K. Sharma ◽  
Prakash S. Bisen

Background: Jatropha curcas is one of the most suitable plants which seeds are nonedible in nature but rich in oil. Around 350 oil bearing crops are found suitable as potential alternative fuels for diesel engine. Non-edible crop Jatropha curcas has been identified by many experts for biodiesel production in many countries like India. Objective: The objective of this study is to find out the composition of Jatropha curcas oil and its relation with engine parameters. This research covers selected aspects of physical and chemical relation of fatty acid composition of Jatropha curcas oil and its fuel properties. Methods: A gas-chromatograph with high resolution mass spectrometer was used to determine the free fatty acid composition of the Jatropha curcas oil sample. The column length, diameter and thickness were 30m, 0.25mm and 0.25μm respectively. Helium gas was used as carrier gas, column flow of 1.80 mL/min for the GC. Results: The major fatty acids found in Jatropha curcas crude oil were the oleic (3.81%), linoleic (50%), palmitic fatty (35.66%) acid. Some physical and chemical characteristics have been evaluated and found suitable for the application in engine. Oxidation stability oxidizability and cetane number has been calculated as 4.949, 1.076 and found 55.856. Conclusion: The physical and chemical properties of Jatropha crude oil are similar to the biodiesel except the viscosity; therefore, further processing is required. The fuel properties of Jatropha Curcas oil based biodiesel were found to be within the limits of American Society for Testing and Materials (ASTM) specifications for biodiesel and diesel fuel.


2020 ◽  
Vol 5 (3) ◽  
pp. 62-71

The main purpose of this research work is to evaluate the predicted values for the corrected Brake power (BP) and corrected specific fuel consumption (SFC) of single cylinder VCR diesel engine operated on diesel and jatropha biodiesel blend (0%, 25%, 50%, 75%, 100%) derived from jatropha curcas oil. Current research work concentrates on the performance parameters of engine 4 stroke single cylinder CI engine, carried out using ISO 10000 approach in which the brake power and specific fuel consumption are corrected via correction factors “α‟ & “β‟ respectively. Also examine combined effect of brake power at various blends and loads in order to find out optimal performance of CI engine by conducting experiments as per IS 10000 method. The experimental work will be used to find out load and blend ratio for optimal brake power and lower specific fuel consumption by using Taguchi’s approach using Minitab software. A set of experiments have been performed as suggested by the software. Engine variable such as loads and blend ratio (Diesel + % JBD) are the most significant variables for brake power at specific fuel consumptions. After experiments, it is reported that the optimized parameters for corrected BP (2.95 KW) are at 100% blend and 10 kg of engine load, and optimized parameter for corrected SFC (0.26 kg/KWh) are at 0% blend and 10 kg engine.


RSC Advances ◽  
2015 ◽  
Vol 5 (78) ◽  
pp. 63596-63604 ◽  
Author(s):  
Supriya B. Chavan ◽  
Rajendra R. Kumbhar ◽  
D. Madhu ◽  
Bhaskar Singh ◽  
Yogesh C. Sharma

High purity calcium oxide (CaO) was prepared from eggshell and was used as a catalyst for the production of biodiesel.


2017 ◽  
Vol 41 ◽  
pp. 845-861 ◽  
Author(s):  
Gajanan SAHU ◽  
Sujan SAHA ◽  
Sudipta DATTA ◽  
Prakash CHAVAN ◽  
Satyanarayan NAIK

ENERGYO ◽  
2018 ◽  
Author(s):  
Y. V. V. Satyanarayana Murthy ◽  
Rajeswara R. Resapu ◽  
M. R. S. Satyanarayana ◽  
Ramakrishna Jogi

2021 ◽  
pp. 9-9
Author(s):  
Nurazira Nor ◽  
Nadia Salih ◽  
Jumat Salimon

Jatropha curcas oil is one of interesting renewable resources for preparation of biolubricants. However, direct application of this oil as a biolubricant is restricted due to its low oxidative stability. This drawback can be overcome by molecule structural redesign through a chemical modification process at its unsaturated functional groups. Jatropha curcas oil was modified via epoxidation, ring opening and esterification processes. Its conversion to the epoxidized oil was performed by using in situ performic acid as a catalyst, then reaction with oleic acid in the presence of p-toluenesulfonic acid as a catalyst in the ring opening process. The final esterification process with oleic acid was catalyzed by sulfuric acid. Molecular structures of the modified oil were determined by measurements of the oxirane oxygen content and by Fourier-transform infrared (FTIR), proton and carbon nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy analyses. The results showed that the oxidative stability, viscosity, flash point and pour point of the final product were significantly improved. In specific, the ring opening and esterification processes inducing branching and bending in the final oil molecular structure have resulted in the improved viscosity index of 135, the pour point of -29?C and the increased flash point of 250?C.


Sign in / Sign up

Export Citation Format

Share Document