scholarly journals Preparation and Characterization of Hybrid Composite Laminated Plates with Variation of Sawdust

From past two-three decades there has been a gradual shift from monolithic to composite materials in order to meet the increasing demand for lighter, high performance, environment friendly, corrosion and wear resistant materials. Composite materials are majorly used in massive production like boats, automotive and air craft Industry etc. in order to improve hardness and impact strength. The manufacturing of hybrid composite laminates is difficult to handle by traditional methods and gives size restrictions, wetting, poor surface finish, more number of moulding required for manufacturing. The Hand lay-up chosen as the fabrication technique when product needs smooth finish slight variations in thickness and number of moldings required is less. The moulding made from materials like plastics, wood, clay, plaster or plywood depending on the availability. Hand lay-up technique has been adopted to manufacture the hybrid composite laminated plate (sawdust with 1%, 2% and 3% variation) and impact strength and hardness is to be calculated.

Author(s):  
Dale Chimenti ◽  
Stanislav Rokhlin ◽  
Peter Nagy

Physical Ultrasonics of Composites is a rigorous introduction to the characterization of composite materials by means of ultrasonic waves. Composites are treated here not simply as uniform media, but as inhomogeneous layered anisotropic media with internal structure characteristic of composite laminates. The objective here is to concentrate on exposing the singular behavior of ultrasonic waves as they interact with layered, anisotropic materials, materials which incorporate those structural elements typical of composite laminates. This book provides a synergistic description of both modeling and experimental methods in addressing wave propagation phenomena and composite property measurements. After a brief review of basic composite mechanics, a thorough treatment of ultrasonics in anisotropic media is presented, along with composite characterization methods. The interaction of ultrasonic waves at interfaces of anisotropic materials is discussed, as are guided waves in composite plates and rods. Waves in layered media are developed from the standpoint of the "Stiffness Matrix", a major advance over the conventional, potentially unstable Transfer Matrix approach. Laminated plates are treated both with the stiffness matrix and using Floquet analysis. The important influence on the received electronic signals in ultrasonic materials characterization from transducer geometry and placement are carefully exposed in a dedicated chapter. Ultrasonic wave interactions are especially susceptible to such influences because ultrasonic transducers are seldom more than a dozen or so wavelengths in diameter. The book ends with a chapter devoted to the emerging field of air-coupled ultrasonics. This new technology has come of age with the development of purpose-built transducers and electronics and is finding ever wider applications, particularly in the characterization of composite laminates.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012033
Author(s):  
M Sadashiva ◽  
S Praveen Kumar ◽  
M K Yathish ◽  
V T Satish ◽  
MR Srinivasa ◽  
...  

Abstract The extensive applications of hybrid composite materials in the field of transportation and structural domine provide prominent advantages in the order of stiffness, strength even cost. However extend the advantages of hybrid campsites in several field such as aviation and marine even more additional properties should be inculcate in them. During production of such profitable composites poses some problems at time at decompose and processing. It’s better to develop environment friendly and reusable composites, bio hybrid composite materials such of the one. In this paper, focused on development of Eco-friendly hybrid bio composites with the ingredients of drumstick fibers, glass fiber along with polyester resin. This hybrid bio composites subjected to bending test and evaluate the characteristics of bending properties, this research evident that bending characteristics of hybrid composites with longitudinal fiber orientation better than transverse.


2017 ◽  
Vol 37 (2) ◽  
pp. 177-184 ◽  
Author(s):  
Ahmet Erkliğ ◽  
Mehmet Bulut

Abstract The aim of this study is to evaluate the effect of hybridizing Kevlar and glass fibers on the tensile and Charpy impact properties of their composites. Produced hybrid samples were designed as unbalanced and asymmetric structures in terms of different mixing ratios between woven Kevlar and S-glass fibers, and their tensile properties were determined using ASTM standards. A series of Charpy impact tests were performed to evaluate the amount of impact strength and absorbed energy by impacting each side of the hybrid composite samples. When the hybrid samples were impacted on the surface of the Kevlar side, they exhibited higher impact resistance compared with glass side impact. The resulting degree of hybridization effects showed that addition of Kevlar layers instead of glass layers contributed a significant increase in impact strength and absorbed energy of the overall composite laminate.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
T. Raja ◽  
S. Ravi ◽  
Alagar Karthick ◽  
Asif Afzal ◽  
B. Saleh ◽  
...  

The usage of natural fibers has increased recently. They are used to replace synthetic fiber products in aircraft and automobile industries. In this study, natural fibers of bidirectional banyan mat and ramie fabrics are used for reinforcement, and the matrix is an epoxy resin to fabricate composite laminates by traditional hand layup technique at atmospheric temperature mode. Five different sequences of reinforcements are as follows to quantify the effect of thermal stability and mechanical behavior of silane-treated and untreated hybrid composites. The results revealed that silane-treated fabric composite laminates were given enhanced mechanical properties of 7% tensile, 11% flexural, and 9% impact strength compared with untreated fabric composite, and at the same time when the increasing of ramie fabric was given the positive influence of 41% improved tensile strength of 40.7 MPa, 49% improved in flexural strength of 38.9 MPa and negative influence in 57% lower impact strength in sample E and positive value in sample A 21.12 J impact energy absorbed in the hybrid composite. Thermogravimetric analysis (TGA) revealed the thermal stability of the hybrid composite. In sample A, the thermal stability is more than in other samples, and 410°C is required to reduce the mass loss of 25%. The working mass condition of the hybrid composite is up to 3.25 g after it moves to degrade.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Norhafiza Muhammad ◽  
Aidah Jumahat ◽  
Nor Merlisa Ali

The growing use of high-performance materials, which are made of hybrid composite systems, has increased rapidly in engineering applications. Hybridization of woven carbon, glass and Kevlar fibre offers better mechanical properties of composite materials. This is also an effective way to reduce the cost of advanced composites. At the moment information on compressive properties of hybrid composites is very limited. It is well known that the compressive strength of composite materials is lower than the tensile strength. Therefore, compressive strength becomes one of the most important criteria in designing composite structures. Therefore, this research is aimed to evaluate the compressive properties of hybrid composites and compare to the properties of neat systems. Hybrid composite samples were fabricated using a vacuum bagging system. The compressive properties of Kevlar hybrid with carbon and glass composites were studied using an INSTRON 3382 universal machine with a constant crosshead speed of 1 mm/min. The compressive properties were determined based on the stress-strain diagram. It was observed that for hybrid composites, placing carbon woven cloth layers in the exterior and Kevlar woven cloth in the interior showed higher compressive strength than placing glass woven cloth layers in the exterior and Kevlar woven cloth in the interior. The modes of failure of the hybrid composite laminates were observed and evaluated using optical microscope and scanning electron microscopy (SEM).


2018 ◽  
Vol 7 (3.34) ◽  
pp. 455 ◽  
Author(s):  
Gurushanth B Vaggar ◽  
S C Kamate ◽  
Pramod V Badyankal

In the current work characterization of thermal properties are find out to the prepared specimens of silicon filler hybrid composite materials (silicon filler glass – fiber chop strand). The specimens were prepared by hand layup followed by compression molding machine by non-heating molding technique. Thermal conductivity (K), Coefficient thermal expansion (CTE) and Thermal gravimetric analysis (TGA) are found by composite slab method and by thermal muffler oven in a laboratory. The guard heater is used to supply heat which is measured by voltmeter and ammeter. Thermocouples are placed between the interface of the copper plates and the specimen of silicon filled hybrid polymer composite material (HPC), to read the temperatures. By the experimental readings it is found that the K of silicon filler hybrid composite material directly proportional to the % of silicon fillers for the different trails. The CTE inversely varies with % of silicon fillers and in thermal gravimetric analysis the failure of material takes place at 300°C for a time of 20 minutes and also reduction in mass of silicon inserted hybrid composite material. From the results it has been concluded that the considerable enhance in thermal conductivity with negligible decrease in CTE and increase in thermal resistivity of hybrid composite materials.  


Sign in / Sign up

Export Citation Format

Share Document