scholarly journals Bandwidth enhanced CPW fed elliptical wideband antenna with slotted defected ground structure

2018 ◽  
Vol 7 (2.8) ◽  
pp. 365
Author(s):  
B T P Madhav ◽  
M Purna Kishore

In this article, a simple curved elliptical coplanar wave guide fed antenna is proposed for wideband applications. An elliptical shaped model of multiband antenna is converted as notch band antenna with placement of slots in the radiating structure and by incorporating defected ground structure, bandwidth enhancement isattained in the proposed model. In short, the multiband antennais modelled in to wideband antenna with bandwidth of 17.8 GHz and impedance bandwidth of 67%.By placing defected ground structure adjacent to feed line on the ground plane, additional resonant frequencies are raised and enhancement in the bandwidth is obtained. The measured results are providing excellent correlation with simulation results obtained from HFSS and CST tools.

2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents the bandwidth enhancement of a Proximity Coupled Feed Rectangular Microstrip Patch Antenna using a new Defected Ground Structure - an ‘inverted SHA’ shaped slot on the ground plane of the proximity coupled feed rectangular Microstrip patch antenna. The parameters such as Bandwidth, Return loss, VSWR and Radiation efficiency are improved in the proposed antenna than simple proximity coupled feed rectangular Microstrip patch antenna without Defected Ground Structure. A comparison is also shown for the proposed Microstrip patch antenna with the antenna structure without Defected Ground Structure. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 180 MHz. A very good return loss of -47.9223 dB is obtained for the Microstrip patch antenna with an ’inverted SHA’ shaped Defected Ground Structure. Implementing an ‘inverted SHA’ shaped defect in the ground plane of the proximity coupled feed rectangular Microstrip patch antenna results in 5.3% improvement in bandwidth with 16.01% reduction in the overall area of the ground plane as compared to the Microstrip patch antenna without Defected Ground Structure.</p>


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Dattatreya Gopi ◽  
Appala Raju Vadaboyina ◽  
J. R. K. Kumar Dabbakuti

AbstractA simple low profile defected ground structure based monopole circular-shaped patch antenna is proposing for ultrawide-band applications. The design allows for a simple and compact structure on the FR-4 substrate material. The proposed design initially has a meager antenna gain and bandwidth. To increase the antenna bandwidth and gain, the defective ground structure is implemented with four dumble-shaped slots. Parametric analysis is considered to find the radius of circular patch for tuning of UWB frequency applications. The proposed MCP antenna resonates at 2.9 GHz, 9.1 GHz frequencies with a S11 of − 34.84 dB, − 33.74 dB, respectively, and achieves 8.1 GHz (2.5–10.6 GHz) impedance bandwidth concerning the − 10 dB reference line of the reflection coefficient. The gains are 8.4 dBi, 8.2 dBi for the two resonant frequencies, and the radiation patterns are semi-omnidirectional, omnidirectional. The proposed antenna has-been validated by observing good agreement between the simulation and the measured results.


In this paper A dual band notched MIMO antennais designed with defected ground structure as ground plane and its characteristics are analyzed. The antenna covers UWB frequency ranging from 3.1-10.6 GHz with single notch band characteristics with maximum gain of 3.7 dB. The antenna provides radiation efficiency of 94% with front to back to ratio of 64%. The simulated studied is carried for many frequency band applications. The designed antenna shows patterns similar to that of a the dipole. The substrate used to design this antenna is FR4 withdimensions of 26mm x40mmx1.6mm and dielectric constant of 4.4.The notch bands are at WLAN and WiMax frequencies.


2015 ◽  
Vol 9 (1) ◽  
pp. 163-170 ◽  
Author(s):  
B. Rama Sanjeeva Reddy ◽  
D. Vakula

In this paper, a compact, dual-band patch antenna is proposed over Minkowski fractal defected ground structure (DGS) for bandwidth enhancement of global positioning system (GPS) applications. The proposed design combines the truncated dual L-shaped slits cut on diagonal corners of radiating patch and fractal defect on the metallic ground plane. This concept shifts the frequencies to lower bands with improvement in antenna radiation properties. By deploying symmetrical and asymmetrical boundaries to the structure for the fractal DGS on metallic ground plane, improvement in bandwidth and gain are obtained. Compact antenna size is achieved for dual-band GPS frequencies of L1 (1.575 GHz) and L2 (1.227 GHz). The measured results for antenna prototype are (1.2–1.245 GHz): L2 band and (1.51–1.59 GHz): L1 band for 10 dB return loss bandwidth with better pattern radiation. Gain value with and without DGS is observed for compact antenna overall volume of 0.32λ0 × 0.32λ0 × 0.024λ0.


2014 ◽  
Vol 7 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Sanyog Rawat ◽  
Kamalesh Kumar Sharma

A design of annular ring microstrip antenna with finite ground structure is proposed in this paper. The proposed geometry offers impedance bandwidth of 2.362 GHz and has stable radiation patterns for all resonant frequencies in the operational band. It is also found that shape and dimension of the finite ground plane is a key factor in improving the bandwidth of the proposed geometry. The geometry is low profile and has simple structure, therefore can be used for lower band of ultra-wideband applications.


2016 ◽  
Vol 9 (5) ◽  
pp. 1075-1083 ◽  
Author(s):  
Ankush Gupta ◽  
Hem Dutt Joshi ◽  
Rajesh Khanna

In this paper, an X-shaped fractal antenna with defected ground structure (DGS) is presented for multiband and wideband applications. The X shape is used due to its simple design and DGS is utilized to achieve size reduction with multiband and wideband features in the frequency range of 1–7 GHz. The proposed structure is fabricated on FR4 substrate with 1.6 mm thickness. We have proposed two different antennas both are having X-shaped fractal patch with a slotted ground plane to have more impedance bandwidth and better return loss. Various parameters like scale factor, width of ground plane, number of slots with their dimensions and feed line length are optimized to have size reduction and for enhancing the performance of antenna. Reflection coefficient shows the multiband and wideband features of proposed antenna. One of the proposed antennas covers various applications like IEEE802.11y at 3.65 and 4.9 GHz, IEEE 802.11a at 5.4 GHz, 802.11P at 5.9 GHz. Other antenna covers applications like IEEE802.16 at 3.5 GHz; 5 cm band for amateur radio and satellite and future 5 G communication systems over 6 GHz. The antenna designing was done using CST software and simulation results were compared with experimental results (using E5071C network analyzer).


A novel design of a Frequency Reconfigurable patch antenna which has applications in the L- Band, namely, radars, GPS, telecommunication system and aircraft surveillance is presented in this paper. The antenna having dimensions of 34.45mm x 45.64mm has been designed using Ansys HFSS. It is a microstrip line inset fed patch antenna with square concentric rings as Defected Ground Structure (DGS) and FR-4 as the substrate. Two PIN diodes, BAR 63-02V, have been used on the ground plane to carry out switching in the frequency domain. The simulated results depict the frequency shift from 1.612 MHz to 1.815 MHz for different combinations of PIN diodes while keeping the radiation patterns intact. The simulated S11 values are well below the – 10dB value in all the four combinations. The average impedance bandwidth obtained is 400 MHz. The measured results on the fabricated antenna using Vector Network Analyzer are in close approximation to the simulated results.


2015 ◽  
Vol 8 (8) ◽  
pp. 1197-1206 ◽  
Author(s):  
Seyed Saeed Mirmosaei ◽  
Seyed Ebrahim Afjei ◽  
Esfandiar Mehrshahi ◽  
Mohammad M. Fakharian

In this paper, an ultra-wideband (UWB) planar monopole antenna with impedance bandwidth from 2.83 to 11.56 GHz and dual band-notched characteristics is presented. The antenna consists of a small rectangular ground plane, a bat-shaped radiating patch, anda 50-Ω microstrip line. The notched bands are realized by introducing two different types of structures. The half-wavelength spiral-slots are etched on the radiating patch to obtain a notched band in 5.15 5.925 GHz for WLAN, HIPERLAN, and DSRC systems. Based on the single band-notched UWB antenna, the second notched band is realized by etching a folded stepped impedance resonator as defected ground structure on the ground plane for WiMAX and C-band communication systems. The notched frequencies can be adjusted by altering the length of resonant cells. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications.


2013 ◽  
Vol 347-350 ◽  
pp. 1695-1698 ◽  
Author(s):  
Wen Li ◽  
Jun Jun Wang ◽  
Yan Chao Sun ◽  
Xian Chao Meng

A compact and simple ultra-wideband microstrip-fed planar antenna with double bandstop characteristic is presented. The antenna consists of a rectangular monopole and two W-shaped slots inserted into the radiating patch and the truncated ground plane. By using a W-shaped slot defected ground structure (DGS) in the feedline, a stopband of 800 MHz (from 5.1 to 5.9 GHz) for band rejection of wireless local area network (WLAN) is achieved. To obtain the other stopband (from 3.7-4.4 GHz), a same shaped slot is etched into the monopole. Moreover, the two stopbands can be controlled by adjusting the length of the slot respectively. The simulation results show that the designed antenna, with a compact size of 38.5 mm×42.5 mm, has an impedance bandwidth of 2.811 GHz for voltage standing wave ratio (VSWR) less than 2, besides two frequency stopbands of 3.74.4 GHz and 5.15.9 GHz. Moreover, the main features including omnidirectional H-plane radiation patterns and the appropriate impedance characteristic are achieved by beveling the radiating patch and the microstrip-fed line of the proposed antenna.


Sign in / Sign up

Export Citation Format

Share Document