scholarly journals Photocatalytic Performances and Antibacterial Activities of Nano-Zno Derived By Cetrimide-Based Co-Precipitation Method by Varying Solvents

In this work, zinc oxide nanoparticles have been synthesized by cost-effective and based on the efficient cetrimide and varying solvents are using the method of co-precipitation annealing at 350 C. The resultant powder samples were characterized well by means of XRD, SEM, FT-IR, PL and UV-visible DRS spectroscopy. Among them, XRD exhibits ZnO has the structure of hexagonal wurtzite with a preferred orientation of 101 planes. It is noted in ZnO represented in SEM images have different solvents and cetrimide has a strong influence on the morphology of ZnO nanostructures that are to be sized are 50nm, 70nm, 90nm 100nm. It confirms that the changes in the band-gap from UV-vis DRS data. The presence of Zn-O confirms various functional groups decomposed in the sample from FTIR data. The PL study states that the emission band available at approximately 410nm and checks the recombination level shows low, further, it correlates with good photocatalytic properties. The sunlight measured by Lux meter and dye degradation studies is done by a simple aeration photocatalytic technique represents 95% degradations and under UV light is 85%. Besides, the scavengers of the responsive species of during the degradation were additionally examined for photocatalytic mechanism. An antibacterial activity is enhanced significantly, which is based on the attribution of Nano features of ZnO nanostructures for p. aeruginosa bacteria. Thus, this study paved the way for potential applications of photocatalytic and antibacterial activities.

2021 ◽  
Author(s):  
B. Yalcin ◽  
S. Ozcelik ◽  
K. Icin ◽  
K. Senturk ◽  
B. Ozcelik ◽  
...  

Abstract The synthesis of magnetic nano-size spinel ferrites has become an important area of research, due to their several potential applications. In this work, CoFe2O4 nanoparticles were synthesized by the co-precipitation method. Structural, magnetic and photocatalytic properties of cobalt ferrites were analyzed based on their chemical composition considering their biological properties. Structural and morphological properties were investigated by X-ray diffraction analysis (XRD) and SEM respectively. Lattice parameters and cell volumes were calculated from XRD data. SEM images revealed uniform surface morphology and spherical shape of nanoparticles. Magnetization measurements were measured by using Lake Shore 7304 model Vibrating Sample Magnetometer. In hemolytic activity tests, formation of a precipitate with a characteristic black color provided an explicit evidence to the formation of heme-iron complexes. Undesirable hemolytic effect of CoFe2O4 nanoparticles on human erythrocytes at both concentrations was attributed to the comparatively high amount of reactive oxygen species formed by CoFe2O4 nanoparticles. The theoretical concentration Co (theory) obtained by second-order model (0.82 mg/L) fit with the experimental value of Co (experimental) (0.95 mg/L) well in photocatalytic activity tests.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2561
Author(s):  
V. Beena ◽  
S. L. Rayar ◽  
S. Ajitha ◽  
Awais Ahmad ◽  
Faiza Jan Iftikhar ◽  
...  

Environmental nanotechnology has received much attention owing to its implications on environmental ecosystem, and thus is promising for the elimination of toxic elements from the aquatic surface. This work focuses on Cu-doped ZnSe nanoparticles using the co-precipitation method. The synthesized Cu-doped ZnSe nanoparticles were examined for structural, optical, and morphological properties with the help of XRD, FTIR, UV/vis diffuse reflection spectroscopy (DRS), FESEM, TEM, and XPS. The synthesized Cu-doped ZnSe nanoparticles revealed the presence of Cu2+ in the ZnSe lattice, which has been shown to take a predominant role for enhanced catalysis in the Cu-doped ZnSe nanoparticles. The synthesized Cu-doped ZnSe nanoparticles were investigated for their catalytic and antibacterial activities. The 0.1 M copper-doped ZnSe nanoparticles exhibited the highest rate of degradation against the methyl orange dye, which was found to be 87%. A pseudo-first-order kinetics was followed by Cu-doped ZnSe nanoparticles with a rate constant of 0.1334 min−1. The gram-positive and gram-negative bacteria were used for investigating the anti-bacterial activity of the Cu-doped ZnSe nanoparticles. The Cu-doped ZnSe nanoparticles exhibited enhanced photocatalytic and antibacterial activity.


2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2018 ◽  
Vol 5 (2) ◽  
pp. 025040 ◽  
Author(s):  
S Jagadhesan ◽  
N Senthilkumar ◽  
V Senthilnathan ◽  
T S Senthil

2021 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Muhammad Nur Iman Amir ◽  
Nurhidayatullaili Muhd Julkaplia ◽  
Saba Afzal

Titanium dioxide (TiO2) nanoparticles are used enormously for treating wastewater pollutants due to their unique optoelectronic and physiochemical properties. Though, wide bandgap, fast recombination of e- - h+ pair, and low adsorption toward organic pollutants limit their applications. However, immobilization of TiO2 on Chitosan (Cs) is believed to overcome these limitations. Cs with plenty of NH2 and OH groups in their structure are expected to enhance their adsorption and consequently photocatalytic performance. A series of TiO2/Cs photocatalysts have been prepared using a chemical co-precipitation method. Amount of TiO2 is varied from 0.25, 0.50, and 0.75 to 1.0 g. The photocatalysts are characterized by using FESEM-EDS, CHNS Elemental Analyser TGA, FTIR, and UV-Vis spectroscopy. These characterization results revealed the formation of a good interface between TiO2 and Cs matrix. Increasing TiO2 content significantly increased the thermal stability of the photocatalyst up to 600ᵒC. The photocatalytic activity of Cs/TiO2 is observed under UV light which is found to be more significant with 1:1(TiO2: Cs) composition for the degradation of methylene blue dye at 85 % and be maintained up to 4 numbers of cycles. This demonstrated open new insight into the application of Cs as a support materials and adsorption agent in TiO2 based photocatalyst system


2021 ◽  
Vol 13 (5) ◽  
pp. 812-819
Author(s):  
Mohamed Helmi Hadj Alouane ◽  
Faheem Ahmed ◽  
Nermin Adel Hussein El Semary ◽  
Munirah F. Aldayel ◽  
Fatimah H. Alhaweti ◽  
...  

In this work, carbon-based nanomaterials including; carbon nanotubes (CNT) and graphene were combined with biofertilisers and tested their impact on germination of Hordeum vulgare. The interaction between nanomaterials and biofertilisers was analysed. Scanning electron microscopy (SEM) images revealed that the surface of algal cells was covered with carbon nanomaterials including graphene and CNTs. Raman studies showed the characteristic band of graphene, CNTs and Algal cells. The combination of carbon nanomaterials with biofertilizers resulted in significantly better growth than with nanomaterials individually. To prepare a more effective superfertiliser, zinc ferrites (ZnFe2O4) nanoparticles were added to the nanomaterials-biofertilisers combination. These zinc ferrites nanofertilisers had a size ranging from 8–12 nm and were prepared by co-precipitation method and used at two different doses. The results showed that the growth parameters were increased most significantly with addition of 0.25 ml of ZnFe2O4 nanoparticles. Increasing the dose caused a less increase in growth parameters. These results indicated that increase in growth parameters was dose-dependent. These results demonstrated a great promise for novel formulation of superfertiliser that significantly enhanced plant growth without pollution or excessive use of harmful chemicals for better food security and environmental sustainability.


2019 ◽  
Vol 294 ◽  
pp. 36-41
Author(s):  
Rolen Brian P. Rivera ◽  
Melchor J. Potestas ◽  
Ma. Reina Suzette B. Madamba ◽  
Rey Y. Capangpangan ◽  
Bernabe L. Linog ◽  
...  

We report on antibacterial activities of Zinc oxide (ZnO) with different structures. Fast furrier transform infrared spectroscopy ZnO nanostructures showed peaks in the range between 450–600 cm-1 indicating the successful growth through the presence of Zn-O stretching. On the other hand, impurities such as zinc complexes might be present due to the appearance of peaks at 1110 cm-1, 1390 cm-1 and 1506 cm-1. Furthermore, SEM images revealed that nanorods and sea-urchin like nanostructures are present in the produced ZnO nanostructures. Nanorods exhibit a better antibacterial response than the sea-urchin like structure. The change in structural morphology along with its purity has greatly influenced the area of bacterial inhibition zone during antibacterial testing.


2016 ◽  
Vol 875 ◽  
pp. 24-44
Author(s):  
Ming Guo Ma ◽  
Shan Liu ◽  
Lian Hua Fu

CaCO3 has six polymorphs such as vaterite, aragonite, calcite, amorphous, crystalline monohydrate, and hexahydrate CaCO3. CaCO3 is a typical biomineral that is abundant in both organisms and nature and has important industrial applications. Cellulose could be used as feedstocks for producing biofuels, bio-based chemicals, and high value-added bio-based materials. In the past, more attentions have been paid to the synthesis and applications of CaCO3 and cellulose/CaCO3 nanocomposites due to its relating properties such as mechanical strength, biocompatibility, and biodegradation, and bioactivity, and potential applications including biomedical, antibacterial, and water pretreatment fields as functional materials. A variety of synthesis methods such as the hydrothermal/solvothermal method, biomimetic mineralization method, microwave-assisted method, (co-) precipitation method, and sonochemistry method, were employed to the preparation of CaCO3 and cellulose/CaCO3 nanocomposites. In this chapter, the recent development of CaCO3 and cellulose/CaCO3 nanocomposites has been reviewed. The synthesis, characterization, and biomedical applications of CaCO3 and cellulose/CaCO3 nanocomposites are summarized. The future developments of CaCO3 and cellulose/CaCO3 nanocomposites are also suggested.


2019 ◽  
Vol 967 ◽  
pp. 259-266 ◽  
Author(s):  
Muhammad Rizal Fahlepy ◽  
Yuyu Wahyuni ◽  
Muhamma Andhika ◽  
Arini Tiwow Vistarani ◽  
Subaer

This research is about nanoparticles hematite (NPH) synthesized and characterized from natural iron sands using co-precipitation method and its potential applications as extrinsic semiconductor materials type-N. The aims of this study is to determine the process parameters to obtain hematite of high purity degree and to observe its physical characteristics as an extrinsic semiconductor materials type-N. The iron sand was first separated by magnetic technique and then dissolved into HCl solution before conducting the precipitation process. Precipitation was done by dripping ammonium hydroxide (NH4OH). Precipitated powder was dried at 80°C for 2 hours, and then calcined at 500°C, 600°C 700°C for 2 hours respectively. The composition of iron sands, purity degree, hematite mineral grain size, and space group were analyzed by XRF, XRD, FTIR and SEM. The XRF analysis result of raw material, showed that dominant element and composition in the sample is Fe with purity degree is 90.51%. The XRD result before and after precipitation showed Fe3O4 and α-Fe2O3. Fe3O4 purity degree was obtained 85%, and α-Fe2O3 in NPH500, NPH600, NPH700 were 63%, 83%, and 76%, respectively. FTIR spectral showed crystalline hematite characteristics stong band of 472.07 to 559.62 cm-1. SEM image showed the morphology of agglomeration particulates, when the calcinaton temperature increases, the agglomeration will be seperated due to thermal energy. Based on the charaterization results it was found that the natural iron sand synthesized has the potential to be applied as an N-type extrinsic semiconductor material.


2015 ◽  
Vol 827 ◽  
pp. 43-48
Author(s):  
Annisa Noorhidayati ◽  
Mia Putri Rahmawati ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

Transition metal ions (Co and Cr) doped ZnO nanoparticles supported on natural zeolite were synthesized using co-precipitation method. The synthesized samples were characterized by means of X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and UV-visible diffuse reflectance spectroscopy. The samples were further used as photocatalyst for degradation of methyl orange and methylene blue in aqueous solutions under UV light irradiation. The results showed that zeolite supported Cr-doped ZnO nanoparticles is more efficient compared with zeolite supported Co-doped ZnO nanoparticles. It is also revealed that zeolite supported samples possessed higher photocatalytic efficiency compared to bare samples.


Sign in / Sign up

Export Citation Format

Share Document