scholarly journals Effect of Fibre Hybridisation on Mechanical Properties of Cementitious Composites

Conventional cement based composites have constituent materials such as Portland cement, supplementary cementitious materials, fine sand, super-plasticizer and water. To achieve high performance, these composites needs high cement content in it which will cause high cost of production. Addition of supplementary cementitious materials as partial substitutes for cement will help in reducing the cost. In this study, a pre-characterized mix proportion of cementitious composite, in which 30% of cement was substituted with lime powder. To enhance the ductility of the composite, the matrix is reinforced with 2% (by volume of composite) of crimped steel fibres. Further, hybridisation of metallic and non-metallic fibres is done in this study to bring the self-weight of the mix down and to reduce the chances of degradation due to the corrosion of fibres. Fibre hybridisation was done by replacing 25%, 50%, 75% and 100% by volume of steel fibres with poly propylene (PP) fibres. The characterisation of the fibre reinforced composites was done by assessing their workability by conducting flow test, compressive strength test, split tensile strength test, flexure test and low velocity impact test. It was observed that, the mix with 100% of steel fibres replaced with PP fibres exhibited better workability. It was also observed that, compressive strength, split tensile strength, modulus of rupture and impact resistance were maximum for the mix reinforced with steel fibre alone and the strengths got reduced gradually due to hybridisation of fibres. Based on the requirement of strength, a combination of steel and PP fibres can be used for reinforcing the matrix, which will help in improving ductility, reducing self-weight. By this, the matrix can be made more resistant to corrosion and can be used in structures especially in the marine environment.

2021 ◽  
Vol 877 (1) ◽  
pp. 012029
Author(s):  
Hasan Jasim Mohammed ◽  
Zeina Saad Sabir

Abstract The purpose of this research is to investigate the properties of Recycled Demolition Aggregate (RDA) concrete. Five RDA concrete ratios are prepared experimentally by substituting, 0%, 25%, 50%, 75% and 100% of the gravel weight with RDA. While, the 10% of cement is substituted by silica fume (Si). Adding steel fibres (SF) (0.5 %, 1.0 % and 1.5 %). Treated RDA with cement mortar and superplasticizer (SP) admixture added to (1%) of total cementitious materials (TCM). The concrete properties exams performed such as; density, compressive strength, splitting tensile strength, and modulus of rupture. The tests concluded that the compressive strength, splitting tensile strength and rupture modulus values of RDA concretes are reduced with an increased RDA ratio relative to normal concrete. Density of RDA concrete reduces around 9% of normal concrete. The RDA is suitable in concrete and meets specifications.


2020 ◽  
Vol 39 (3) ◽  
pp. 710-720
Author(s):  
I.M. Adamu ◽  
J.M. Kaura ◽  
A. Lawan ◽  
A. Ocholi

The failure of conventional concrete to have classical mechanical properties, reduced permeability and lead to sustainability in concrete production called for the use of supplementary Cementitious Materials (SCM) in concrete to improve its performance. This study investigates the effect of adding optimal dosage of an SCM called nanosilica (nS) on the tensile and compressive strengths, microstructural properties and cement hydration reaction for grade 30 concrete. The optimal dosage of the nS was determined to be 1.5% by weight of cement using compressive strength test. The influence of optimal nS dosage on the concrete properties was investigated using compressive strength test, splitting tensile strength test, Scanning Electron Microscopy (SEM) and Energy Dispersion Spectroscopy (EDS). Results revealed that optimal nS addition led to 30% and 23.3% respective increase in compressive and tensile strengths of conventional concrete at 7days of curing. SEM micrographs show better packing density in the nano-concrete at 90days of curing. EDS shows that addition of optimal nS dosage in concrete led to formation of more C-S-H gels at 90days curing period, and a corresponding reduction in Ca/Si ratio of the nano-concrete to 0.89; a ratio that is very close to that of 14Ǻ tobermorite reported in literature. The optimal nano-concrete can be used where strength improvement, especially at early age and reduction in concrete permeability are requirements. Keywords: Compressive strength, Tensile strength, Normal strength nano-concrete, SEM, EDS.


2019 ◽  
Vol 7 (1) ◽  
pp. 24-29
Author(s):  
A. Ajwad ◽  
N. Khadim ◽  
Abdullah ◽  
U. Ilyas ◽  
M. U. Rashid ◽  
...  

In this research, fine and coarse aggregates present in the concrete are replaced with steel dust and shred-like steel fibres, respectively in different ratios and its effect on the properties of concrete is studied. Eight batches of concrete were mixed, each with the mix proportion of 1:2:4 and water cement ratio of 0.52. Batch A was of normal concrete. In batches B, C, and D, 5%, 10%, and 15% of sand was replaced with steel dust. In batches, E, F, and G, 2%, 5%, and 8% of coarse aggregate were replaced with steel fibres. In the last batch H, both 5% of sand and 5% of coarse aggregate were replaced with steel fine and steel fibres respectively. British as well as American standards were followed during the research. Slump test was performed in a fresh state of each mix to find the effect of these replacements on workability. 12 cubes of 150mm x 150mm x 150mm for compressive strength test and 12 cylinders of 150mm diameter and 300mm height of each, for tensile strength test were made for each batch to check these strength after 3, 7, 14, 28 days. It was found that the workability of fresh concrete decreases while density of fresh as well as hardened concrete increases with these replacements. It also results in an increase in initial compressive strength and a decrease in final compressive strength as compared to those of normal concrete. As far as tensile strength is concerned an increase in initial as well as final strength was observed.


Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


Author(s):  
C. Mounika

Abstract: The main aim of this project is to evaluate mechanical properties of interlocking bricks using coir fiber powder as a substitute of cement and rubber tire waste as a substitute of fine aggregate (sand) with varying percentages of 0%, 1%, 2% & 3% and 0%, 5%, 10% & 15% in concrete and to help in solving environmental problem produced from disposing of waste tires and coir husk partially. Additionally fly ash was also added with varying percentages of 5%, 10% and 15% as a substitute to cement in a concrete mix. Several laboratory tests such as compressive strength test, flexural strength test, split tensile strength test, water absorption test and density of concrete etc., were conducted on hardened concrete specimen to achieve the optimum usage of crumb rubber tire waste and coir fiber powder in mix proportion of concrete. It is found that the maximum compressive strength value of coir fiber based crumb rubber interlocking brick was obtained at 1%CF + 5%FA + 5%CR, flexural strength value and split tensile strength value of coir fiber based crumb rubber concrete block was obtained at 1%CF + 5%FA + 5%CR. From the final conclusion or outcome of the project, optimum usage of coir fiber powder is 3% and crumb rubber is 5%. Keywords: coir fiber powder, crumb rubber tire waste, mechanical properties, interlocking bricks & optimum usage.


This study presents the experimental investigation carried out to study the mechanical properties of concrete with and without the addition of fibres to it.d Concrete is the most consumed material in the world which has the property of strong in compression and weak in tension. Also plain concrete possess very limited ductility and little resistance to cracking. Hence fibres are introduced in the concrete to improve the tensile strength & brittleness of the concrete. These fibres which are closely spaced and dispersed uniformly in the concrete arrest the micro and macro cracks and improve the tensile strength of concrete. Concrete admixed with such fibres are known as Fibre Reinforced Concrete. The combination of two (or) more fibres called as Hybridization is carried out in this work. M25 grade concrete is designed as per IS 10262:2009 with the volume fraction of 0-1.5%. The workability of the concrete is affected due to the addition of fibres and hence super plasticizers are added to the concrete. The fibres considered for the study are (i) Crimped Steel Fibre (0-1.5%) and (ii) Shortcut Glass Fibre (0.1-0.2%). The behaviour of the hybrid fibre reinforced concrete is investigated by conducting compressive strength test on cube specimen of size 150mmx150mmx150mm and split tensile strength test on cylinder specimen of size 150mm diameter and 300mm height. From the experimental results, the optimum fibre combinations for maximum compressive strength and spilt tensile strength of concrete are identified.


2021 ◽  
Vol 14 (2) ◽  
pp. 30
Author(s):  
Armin Naibaho ◽  
Agus Sugiarto ◽  
Purnama Dewi

Abstract The use of the mountain seal used as a building block for concrete should be considered, based on current usage apart from being a light construction material for housing, mountain materials from these two places are used as the main aggregate material for building construction, water structures (dams), roads. and bridges located in the surrounding Malang-Kota Batu area To determine the size of the aggregate, the coarse aggregate is sieved using a vibrating sieve, while the fine aggregate is sieved by a hydraulic sieve. In the screening process, about 70% of the filtered must pass so that high efficiency and capacity can be achieved. The compressive strength test results obtained the average compressive strength value at 28 days of concrete for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Batu City area is equivalent to 35.65 MPa. The results of the split tensile strength test showed that the average split strength value at the age of 28 days for concrete with fine aggregate sand zone III and coarse aggregate (gravel) in the Kota Batu area is equivalent to 2.51 MPa. The compressive strength value for normal concrete is 35.65 MPa, it should produce split tensile strength = 4.179 MPa according to the provisions of SNI T-15-1991-03 Article 3.2.5 (fr = 0.70√fc '). Even though the split tensile strength value obtained in the laboratory is only 2.51 MPa, this means that the quality of materials (sand and broken stone) from Batu City is not suitable for use as building materials. Because the number 2.51 MPa is relatively much smaller than the value of 4.179 MPa, it is only one of the factors outlined in the SNI T-15-1991-03 article 3.2.5. Keywords: Mountain Material, Concrete, Concrete Compressive Strength Test, Concrete Tensile Strength Test


2021 ◽  
Vol 3 (3) ◽  
pp. 49-61
Author(s):  
Meisye Mitha Siranga ◽  
Suryanti Rapang Tonapa ◽  
Frans Phengkarsa

The use of concrete in Indonesia cannot be separated from skyscrapers, bridges with long spans, and underground buildings which generally have a larger load, so the use of high-strength concrete is necessary. This study aims to determine the value of compressive strength, split tensile strength, flexural strength, modulus of elasticity of concrete and determine the workability of fresh concrete with the addition of 0.8% superplaticizer. The test objects used in the form of cylinders with a diameter of 15 cm and a height of 30 cm as many as 15 pieces, and 3 pieces of blocks measuring 15 cm × 15 cm × 60 cm. From the results of the study, the compressive strength value was 43,007 MPa. The split tensile strength test is 3.584 MPa. The flexural strength test is 4,340 MPa. The elastic modulus test is 28447.956 MPa. From the slump test on fresh concrete with the addition of a superplaticizer, it is obtained by 10 cm.


INFO-TEKNIK ◽  
2020 ◽  
Vol 21 (2) ◽  
pp. 227
Author(s):  
Fauzi Rahman ◽  
Gawit Hidayat ◽  
Novita Bertiani

According to the Badan Pusat Statistik data in 2018, the total area of oil palm plantations in Indonesia currently reaches around 12.3 million hectares. Solid waste is the most waste, which is around 35-40% of the total Fresh Fruit Bunches (FFB) which is processed in the form of empty fruit bunches, fiber, fruit shells, and burnt ash. PT. Hasnur Citra Terpadu in Rantau, Tapin Regency, South Kalimantan is one of the Palm Oil Mill which in the combustion process of a boiler engine using oil palm shells and fibers is burned simultaneously. The result of the combustion process produces waste in the form of boiler crust ash which is fine textured (fly ash) and coarse textured (bottom ash). This study uses fly ash as a cement substitution for concrete mixtures. The making of mortar specimens was varied with fly ash with a percentage of 0%, 10%, 15%, 20% and 25% which will be tested for compressive strength at the age of 3 days, 7 days, 14 days, 21 days, and 28 days. Then the making of concrete specimens is planned with a quality of 25 MPa and the concrete compressive strength is tested at the age of 3 days, 7 days, 14 days, 28 days and 56 days and the split tensile strength test of the concrete at 28 days. Based on the results of the mortar compressive strength analysis, the optimum mixture of fly ash is 10% which is used for making concrete. The average compressive strength of normal concrete at 28 days is 26.33 MPa and the compressive strength of concrete with 10% fly ash (optimum concrete) is 26.14 MPa exceeding the design compressive strength of 25 MPa. Based on the results of the split tensile strength test of concrete at the age of 28 days, it was obtained 3,914 MPa for normal concrete and 3,466 MPa for optimum concrete.


Sign in / Sign up

Export Citation Format

Share Document