scholarly journals A CPW-fed Tomb Shaped Antenna for UWB Applications

In this paper a Coplanar Waveguide (CPW) fed tomb shaped antenna with novel broad banding techniques is proposed for Ultra-Wideband (UWB) applications. The initial design is taken as an elliptical radiator and techniques such as beveling of upper and lower half of elliptical radiator and introducing staircase in the coplanar ground plane of the antenna are used to significantly enhance the bandwidth. The proposed antenna has overall size of 50×38×1.6 mm3 and possess good radiation characteristics and return loss < -10 dB in the whole UWB spectrum from 2.8 GHz to 18 GHz. CST MICROWAVE STUDIO SUITE is employed for the design, optimization and simulation of antenna, which is based on method of finite integration technique (FIT). The performance of the proposed antenna is validated by comparing simulated and experimental results which exhibit that the designed antenna can be employed in various UWB applications.

2020 ◽  
Vol 8 (5) ◽  
pp. 3988-3990

In this paper, A coplanar waveguide (CPW) ultra-wideband(UWB) antenna is designed, analyzed and simulated by computer simulation technology(CST). The proposed antenna is fabricated on FR-4 dielectric substrate. A microstrip feed line is used to excite the antenna.The ground plane is slotted to improve the impedance bandwidth (BW). Here, a rectangular patch is used as radiator and two corners out of four are truncated to improve impedance matching and UWB characterization.This antenna satisfies UWB characteristics like VSWR<2, Return loss(S11)<-10 dB,Gain<5dB and the antenna is operating within the frequency range of 1.59 to 11.87 GHz range which covers whole ultra wideband i.e. 3.1 to 10.6 GHz range.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


2021 ◽  
pp. 1-7
Author(s):  
Ahmed Shaker ◽  
◽  
Ayman Haggag

A compact ultra-wideband (UWB) Multiple-Input-Multiple-Output (MIMO) antenna with a notched band is presented. The proposed design consists of four unipolar UWB radiators, and these monopole radiators are placed perpendicular to each other to exploit polarization diversity, where the four-element ultra-wideband (UWB) Multiple-Input-Multiple-Output (MIMO) antenna is presented. The total size of the antenna is 60x60 mm2. The operating frequency of the antenna is 3.1–11 GHz with a return loss of less than 10 dB, except at the notched band of 4.9– 5.9 GHz. This antenna consists of an isosceles trapezoidal plate with a circular notch cut and two transitional steps as well as a partial ground plane. For UWB bandwidth enhancement techniques: use of a partial ground plane, and modify the gap between the radioactive element and ground plane technique, using steps to control the resistance stability and a notch cut technique. The notch cut from the radiator is too used to reduce the size of the plane antenna. The measured -10 dB return loss bandwidth for the designed antenna is about 116.3% (8.7 GHz). The MIMO antenna does not require any additional structure to improve insulation. The proposed antenna supplies an acceptable radiation pattern and relatively flat gain over the entire frequency band.


2017 ◽  
Vol 7 (5) ◽  
pp. 1918-1921
Author(s):  
H. Alsaif

In this paper, a novel highly compact microstrip monopole antenna with adjusted ground plane for ultra-wideband (UWB) applications is proposed. The patch antenna is composed of a trimmed radiator and rectangular ground plane with four slots providing relatively extreme wide operating frequency from 2.8 till 16.2 GHz based on -10 dB criteria. The high matching impedance in the design results in ultra-wide bandwidth that covers the entire BW allocated by FCC for UWB applications. At the same time, the presented antenna is distinguished by significantly miniaturized structure with total size of 13 mm x 10 mm printed on a substrate material of Rogers Duriod RT 5880 LZ with relative permittivity of εr=1.9 and loss tangent δ of 0.0009. The suggested antenna is appropriate for miniature wireless gadgets. The patch has been investigated, and optimized in terms of operating frequency, impedance matching, radiation characteristics, structure size, and fabrication cost.


2016 ◽  
Vol 9 (3) ◽  
pp. 505-508 ◽  
Author(s):  
Sangeetha Velan ◽  
Malathi Kanagasabai

This paper presents the design of a compact, planar, single layer, tri-section ultra-wideband (UWB) branch-line (BL) coupler. The prototype offers 10 dB return loss characteristics from 3.1 to 13.7 GHz. Over a major portion of the band, phase imbalance of ±10° is achieved. The method of deploying multi stage impedance feed has been used to achieve improved bandwidth. To enhance the power output through the coupled port throughout the operating band, ring shaped slots have been introduced in the ground plane beneath the series arms. The performance of the fabricated prototype has also been validated experimentally.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 453
Author(s):  
Sharadindu Gopal Kirtania ◽  
Bachir Adham Younes ◽  
Abdul Rakib Hossain ◽  
Tutku Karacolak ◽  
Praveen Kumar Sekhar

In this article, an inkjet-printed circular-shaped monopole ultra-wideband (UWB) antenna with an inside-cut feed structure was implemented on a flexible polyethylene terephthalate (PET) substrate. The coplanar waveguide (CPW)-fed antenna was designed using ANSYS high-frequency structural simulator (HFSS), which operates at 3.04–10.70 GHz and 15.18–18 GHz (upper Ku band) with a return loss < −10 dB and a VSWR < 2. The antenna, with the dimensions of 47 mm × 25 mm × 0.135 mm, exhibited omnidirectional radiation characteristics over the entire impedance bandwidth, with an average peak gain of 3.94 dBi. The simulated antenna structure was in good agreement with the experiment’s measured results under flat and bending conditions, making it conducive for flexible and wearable Internet of things (IoT) applications.


Author(s):  
Ammar Alhegazi ◽  
Zahriladha Zakaria ◽  
Noor Azwan Shairi ◽  
Tole Sutikno ◽  
Sharif Ahmed

<span>A new design of filtenna with electronically reconfigurable band notch for <a name="_Hlk493351084"></a>ultra-wideband (UWB) applications is presented. The filtenna is designed based on modified monopole antenna integrated with resonant structure. To produce wider bandwidth with better return loss and higher frequency skirt selectivity, the monopole antenna is modified using microstrip transition in the feedline and block with a triangular-shape slot on each side of the circular patch. The resonant structure is about U-shaped slot defected on the feedline to achieve band notch characteristic. The position of the created band notch is controlled by optimizing the length of the U-shaped slot. By using a PIN diode switch inserted in the U-shaped slot to achieve reconfigurability feature. The experimental results show that the proposed design exhibits a wide bandwidth ranging from 3.0 to 14.0 GHz with reconfigurable band notch at 5.5 GHz (WLAN), and omnidirectional radiation pattern. Therefore, the proposed design is a good candidate for modern UWB applications.</span>


2018 ◽  
Vol 7 (2.7) ◽  
pp. 597
Author(s):  
EVV Satyanarayana ◽  
Vivek Kumar ◽  
D Mallikarjun Reddy ◽  
T Siva Paravathi ◽  
J Chandrasekhar Rao

The ultra wide band (UWB) Multiple-Input- Multiple-Output (MIMO) antenna with coplanar waveguide (CPW) having size of 18 x 23 x 0.8mm3 is designed for ultra-wideband (UWB) applications. The designed MIMO antenna contains two symmetrical circular disc loaded curved elliptical monopoles on top of the substrate and common ground plane with Y slot and extended T-shaped stub on bottom of substrate. The T- shape stub is placed on the ground plane to have the better antenna impedance matching and to enhance the isolation between the two antenna ports. To further improve the isolation in between the ports 1 and 2, and also on the ground plane a Y-shaped slot is fixed. Good impedance matching (|S11| < -10dB) in the range from 2.8GHz to 12 GHz is provided by the proposed antenna, and an enhanced isolation of -27dB, low ECC of below 0.002, an acceptable gain of about 7 dBi and an efficiency of above 90%. The obtained result proves that the designed antenna is more appropriate for the portable devices.  


2014 ◽  
Vol 7 (5) ◽  
pp. 571-577
Author(s):  
Raghupatruni Venkat Siva Ram Krishna ◽  
Raj Kumar ◽  
Nagendra Kushwaha

A compact slot antenna for high-gain ultra wideband applications is presented. The slot is asymmetrically cut in the ground plane and is a combination of two rectangles. A hexagonal patch with two stepped coplanar waveguide-feed is used to excite the slot. The capacitive reactance of the hexagonal patch is neutralized by the inductive reactance created by the asymmetric slot and results into wider impedance matching. The measured impedance bandwidth of the proposed antenna is 11.85 GHz (2.9–14.75 GHz). The radiation patterns of the proposed antenna are found to be omni-directional in the H-plane and bi-directional in the E-plane. To enhance the gain of the antenna, a compact three-layer frequency selective surface (FSS) is used as a reflector. The overall thickness of the FSS is 3.5 mm. There is 4–5 dBi improvement in antenna gain after application of the FSS. The measured and simulated results are in good agreement.


2017 ◽  
Vol 24 (1) ◽  
pp. 73-79
Author(s):  
Md. Moinul Islam ◽  
Mohammad Tariqul Islam ◽  
Mohammad Rashed Iqbal Faruque ◽  
Rabah W. Aldhaheri ◽  
Md. Samsuzzaman

AbstractA compact ultra-wideband (UWB) antenna is presented in this paper with a partial ground plane on epoxy woven glass material. The study is discussed to comprehend the effects of various design parameters with explicit parametric analyses. The overall antenna dimension is 0.22×0.26×0.016 λ. A prototype is made on epoxide woven glass fabric dielectric material of 1.6 mm thickness. The measured results point out that the reported antenna belongs to a wide bandwidth comprehending from 3 GHz to more than 11 GHz with VSWR<2. It has a peak gain of 5.52 dBi, where 3.98 dBi is the average gain. Nearly omnidirectional radiation patterns are observed within the operating frequency bands. A good term exists between simulation and measurement results, which lead the reported antenna to be an appropriate candidate for UWB applications.


Sign in / Sign up

Export Citation Format

Share Document