scholarly journals Design a High Speed Multiplier using Two Phase PPA

Basically, multiplier is an efficient superconductor logic which performs various switching operation. Here different types of adders are analysed using different methodologies. In this paper we introduced a multiplier using proposed PPA. It uses parallel prefix adders in their reduction phase and it is an effective system for faster results and optimised. The entire operation of proposed system depends upon three stages they are multiplier partial product generation, reduction stages and parallel prefix adder which is discussed in below sections. The delay gets reduced by achieving low logical depth in the system. So the Proposed system reduces the delay. From the proposed system we can observe that there is a reduction in delay and complexity. Compared to ripple carry adder and carry save adder, proposed system gives better results.

Author(s):  
Hima Bindu Vykuntam ◽  
Chennaiah M ◽  
Sudhakar K

In this paper, we propose Carry Select Adder (CSLA) architecture with parallel prefix adder. Instead of using 4-bit Brent Kung Adder (BKA), another parallel prefix adder i.e., 4-bit spanning Tree (ST) adder is used to design CSA. Because Adders are key element in digital design, which are not only performing addition operation, but also many other function such as subtraction, multiplication and division. A Ripple Carry Adder (RCA) gives the most complicated design as-well-as longer computation time so that we may gone for parallel prefix adders. This time critical application we use Spanning tree parallel prefix adder to drive fast results but they lead to increase in area. Proposed Carry Select Adder understands between RCA and BKA in term of area and delay. Delay of Existing adders is larger therefore we have replaced those with Brent Spanning Tree parallel prefix adder which gives fast result. This paper describes comparative performance of 4-bit RCA and 4-Bit BK parallel prefix adders with Our Proposed Spanning Tree adder based carry select adder designed using Xilinx ISE tool.


2013 ◽  
Vol 42 (7) ◽  
pp. 731-743 ◽  
Author(s):  
Stefania Perri ◽  
Marco Lanuzza ◽  
Pasquale Corsonello

Author(s):  
Nehru.K K ◽  
Nagarjuna T ◽  
Somanaidu U

<span>Parallel prefix adder network is a type of carry look ahead adder structure. It is widely considered as the fastest adder and used for high performance arithmetic circuits in the digital signal processors. In this article, an introduction to the design of 64 bit parallel prefix adder using transmission technique which acquires least no of nodes<strong> </strong>with the lowest transistor<strong> </strong>count and low power consumption is presented. The 64 bit parallel prefix adder is designed and comparison is made between other previously parallel prefix adders. The result shows that the proposed 64 bit parallel prefix adder is slightly better than existing parallel prefix adders and it considerably increases the computation speed.The spice tool is used for analysis with different supply voltages.</span>


Author(s):  
Abdulkareem Dawah Abbas

A review of high-speed pipelined phase accumulator (PA) is proposed in this paper. The detail explanation of ideas, methods and techniques used in previous researches to improve the PA throughput designs were surveyed. The Brent–Kung (BK) adder was modified in this paper to be applied in pipelined PA architecture. A comparison of different adder circuits, includes a modified BK, ripple carry adder (RCA), Kogge-Stone adder (KS) and other prefix adders were applied to architect the PA based on Pipeline technique. The presented pipelined PA design circuit with multiple frequency control word (FCW) and different adders were coded Verilog hardware description language (HDL) code, compiled and verified with field programmable gate array (FPGA) kit platform. The comparison result shows that the modified BK adder has fast performances. The shifted clocking technique is utilized in the proposed pipelined PA circuit to reduce the unwanted repetitive D-flip flop (DFF) registers (coming from the pipeline technique), while preserving the high speed.


Author(s):  
Barma Venkata RamaLakshmi Et. al.

This paper presents the implementation and design of  Radix-8 booth Multiplier using 32-bit parallel prefix adders. High performance processors have a high demand in the industrial market. For achieving high performance and to enhance the computational speed multiplier plays a key role in performance of digital system. But the major drawback is it consumes more power , area and delay. To enhance the performance and decrease the area consumption and delay there are many algorithms and techniques. In this paper we designed a radix-8 Booth Multiplier using two parallel prefix adders and compared them for best optimized multiplier. The number of parital products generation can be reduced by n/3 by using radix-8 in the multiplier encoding. To further reduce the additions we have used booth recoding mechanism .We have implemented the design using Kogge stone adder and Brent kung adder. We observed that by using parallel prefix adders reduces the delay further more which results in significant increase in speed of the digital systems. The simulation results are carried out on XILINX VIVADO software.


Sign in / Sign up

Export Citation Format

Share Document