scholarly journals Experimentation on Geopolymer Concrete Added with Fly Ash

The technique for living and the speedy headway of advancement have provoked an extension in the total and sort of waste made, inciting waste exchange crisis. This investigation takes care of the issue of the plastic transfer emergency in condition. So as to contain certain waste, reuse of some waste materials can be supplanted in the relational word of cement. The squanders which are reused in this venture utilizes diverse level of waste plastics in cement. This monitors normal assets and illuminates a developing waste transfer emergency. Squander plastic are supplant somewhat with coarse total (0%,1%,2% and 3%). In this present examination, numerous research facility tests were done for the assessment of properties of OPC on substitutions. The tests are compressive quality, flexural quality, and circuitous elasticity (parting). At last the test outcomes are contrasted and ordinary cement.

2022 ◽  
Vol 955 (1) ◽  
pp. 012010
Author(s):  
A Kustirini ◽  
Antonius ◽  
P Setiyawan

Abstract Geopolymer concrete is concrete that uses environmentally friendly materials, using fly ash from waste materials from the coal industry as a substitute for cement. To produce geopolymer concrete, an alkaline activator is required, with a mixture of Sodium Hydroxide and Sodium Silicate. This research is an experimental study to determine the effect of variations in the concentration of sodium hydroxide (NaOH) 8 Mol, 10 Mol, 12 Mol, and 14 Mol on the compressive strength of geopolymer concrete. Mortar Geopolymer uses a mixture of 1: 3 for the ratio of fly ash and sand, 2.5: 0.45 for the ratio of sodium silicate and sodium hydroxide as an alkaline solution. The specimens used a cube mold having dimension 5 cm x 5 cm x 5 cm, then tested at 7 days and 28 days. The test resulted that concentration of NaOH 12 Mol obtained the maximum compressive strength of geopolymer concrete, that is 38.54 MPa. At concentrations of 12 Mol NaOH and exceeding 12M, the compressive strength of geopolymer concrete decreased.


Sustainable building production includes the effective usage of natural materials by the processing of waste materials. The present work aims to use different waste materials, such as fly ash, industrial waste pond ash, rubber crumbs from rubber tires, recycled coarse aggregate from building waste. In doing so, the goal of reducing building costs will be achieved and can help to solve the issues connected with its disposal, particularly the environmental concerns of the area. Throughout this project, Rubber Crumbs (RC) and Recycled Coarse Aggregate (RCA) were partly substituted instead of coarse aggregate with a percentage of 10, 15, 20, and 5, 10, 15, which were found to improve the flexural strength of concrete. Such products may also be used for renewable building purposes.


2019 ◽  
Vol 8 (4) ◽  
pp. 12245-12250

Today the Serious issue, the world is confronting is the ecological contamination. In the development business primarily the generation of Portland concrete will causes the emanation of toxins which brings about high ecological contamination. But as we all known that Cement is the most consumed product in the world.And, 7% of the global carbon dioxide is going to be emitted by this process. Thus, we can diminish the contamination impact on condition, by expanding the utilization of modern side-effects in our development industry. Subsequently, Geopolymer concrete (GPC) is a unique kind of more eco-friendlier solid option in contrast to Ordinary Portland Cement (OPC) concrete. The main aim of this project is to study of effect of class F fly ash (FA) and ground granulated blast furnace slag (GGBS) of geopolymer concrete (GPC) mechanical properties at different replacement levels (MIX-1: FA100%-GGBS0%,MIX-2: FA75%-GGBS25%, MIX-3: FA50%-GGBS50%, MIX-4: FA25%-GGBS75%,MIX-5: FA0%-GGBS100%) utilizing Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) arrangements as an antacid activators.By considering diverse molaritys of sodium hydroxide asan alkaline activators.By considering different molaritys of sodium hydroxide as 0M,5M & 10M.And the Specimens were casted and cured for different curing periods at ambient room temperature to decide the GPC mechanical properties viz. compressive, split tractable and flexural quality. Test outcomes shows that so an expansion in GGBS substitution it will improve the mechanical properties of GPC at all ages at surrounding room temperature.


2018 ◽  
Vol 8 (2) ◽  
pp. 7
Author(s):  
R. THENMOZHI ◽  
VADIVEL T.SENTHIL ◽  
S. MUTHURAMALINGAM ◽  
V. PADMAPRIYA ◽  
◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


Author(s):  
Z. Podolsky ◽  
J. Liu ◽  
H Dinh ◽  
J.H. Doh ◽  
M. Guerrieri ◽  
...  

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Ramamohana Reddy Bellum ◽  
Chava Venkatesh ◽  
Sri Rama Chand Madduru

2021 ◽  
Vol 11 (15) ◽  
pp. 6740
Author(s):  
Rana Muhammad Waqas ◽  
Faheem Butt

Geopolymer concrete, also known as an earth-friendly concrete, has been under continuous study due to its environmental benefits and a sustainable alternative to conventional concrete construction. The supplies of many source materials, such as fly ash (FA) or slag (SG), to produce geopolymer concrete (GPC) may be limited; however, quarry rock dust (QRD) wastes (limestone, dolomite, or silica powders) formed by crushing rocks appear virtually endless. Although significant experimental research has been carried out on GPC, with a major focus on the mix design development, rheological, durability, and mechanical properties of the GPC mixes; still the information available on the structural behavior of GPC is rather limited. This has implications in extending GPC application from a laboratory-based technology to an at-site product. This study investigates the structural behavior of quarry-rock-dust-incorporated fiber-reinforced GPC columns under concentric and eccentric loading. In this study, a total of 20 columns with 200 mm square cross-section and 1000 mm height were tested. The FA and SG were used as source materials to produce GPC mixtures. The QRD was incorporated as a partial replacement (20%) of SG. The conventional concrete (CC) columns were prepared as the reference specimens. The effect of incorporating quarry rock dust as a replacement of SG, steel fibers, and loading conditions (concentric and eccentric loading) on the structural behavior of GPC columns were studied. The test results revealed that quarry rock dust is an adequate material that can be used as a source material in GPC to manufacture structural concrete members with satisfactory performance. The general performance of the GPC columns incorporating QRD (20%) is observed to be similar to that of GPC columns (without QRD) and CC columns. The addition of steel fibers considerably improves the loading capacity, ductility, and axial load–displacement behavior of the tested columns. The load capacities of fiber-reinforced GPC columns were about 5–7% greater in comparison to the CC columns. The spalling of concrete cover at failure was detected in all plain GPC columns, whereas the failure mode of all fiber-reinforced GPC columns is characterized with surface cracking leading to disintegration of concrete cover.


Sign in / Sign up

Export Citation Format

Share Document