scholarly journals Design and Analysis of Metamaterial Unit CellUltra-Wide Band Triangular Antenna for C Band Applications

This works discuss about the design and development of a metamaterial triangular micro strip ultra-wideband antenna for C-Band communication. This study includes design and performance analysis of patch based antenna to serve C- band applications such as satellite communications. In first scenario, simple triangular antenna with normal ground plane has designed and analyzed. And In second scenario, to improve the antenna radiation, ground has altered and replaced with a unit cell structure. To further improve the antenna performance Split Ring Resonators are incorporated along with radiating patch. In these three different scenarios, antenna performance has been improved from first scenario to last scenario, while dimension of antenna got miniaturized, which is most desirable feature. The antenna gain of antenna in three scenarios is 4.96 db, 5.65 db and 6.15 db respectively. Antenna radiates over 6-7 GHz frequency band in first case, whereas in second scenario it radiates from 5.7 – 7.1 GHz and in third scenario antenna radiates at 5.6-7.4GHz band. This antenna can be placed in limited space.

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 677
Author(s):  
Elham A. Serria ◽  
Mousa I. Hussein

This study is addressing the slotted ring resonator effect on the performance of the ultra-wide band (UWB) microstrip antenna. Two types of metamaterial with double slotted ring resonators (SRR), circular (C-SRR) and square (S-SRR), are studied and implemented on back of the antenna. The design examines the effect of the number of the SRR and its position with respect to the antenna’s ground plane and the rotation of the inner and outer C-SRR rings on different antenna characteristics. The dimensions of the antenna are 45 mm × 31 mm × 1.27 mm. The implementation of the SRR increased the antenna bandwidth to cover the range from 2.2 GHz to 9.8 GHz with rejected bands and frequencies. Antenna simulated characteristics like return loss, maximum gain and radiation pattern are obtained utilizing HFSS. The return loss measurement and the VSWR of the antenna with all SRR configuration studied are in good agreement with simulated results.


the objective of this paper is to design and analysis of the Ultra wide Band Micro strip Patch Antenna which covers the Ultra Wide Band 2.9 to 21.5 GHz. To get an optimum results and performance of the projected self complementary UWB antenna depends on the study of dissimilar methods for optimizing the different parameters of the radiating patch along with notch dimensions. The proposed self complementary UWB antenna with overlapped rectangular shape patch and Defected DGS is designed with C-Slot in the radiating patch element and ground with L shaped slot which covers the whole UWB frequency band apart from band notches WLAN (5.125-5.825 GHz) ,Satellite Communications (7.9-8.5 GHz) and Ku band 13.4-14.5GHz.The UWB antenna performance is improved in terms of the Bandwidth by including Rectangular shaped slit between feeding element and the radiating patch. Now a days it is important to avoid existing wireless communication networks from the design of UWB antenna. The self complementary UWB antenna impedance bandwidth from 2.9 GHz to 21.5 GHz with a maximum of return loss S11 -43 dB at operating frequency10.5 GHz and with a Gain of 5.64dB.


2019 ◽  
Vol 18 (1) ◽  
pp. 1-10
Author(s):  
Sadia Sultana ◽  
Rinku Basak

A unique design and meander line implantable antenna is examined in this paper which satisfies the requirements of ultra-wide band. The designed antenna is integrated with the electromagnetic band gap (EBG) structure based ground plane to enhance the performance. Rectangular electromagnetic band gap (EBG) structures are represented here to evaluate the antenna performance. This compact and efficient MLA antenna is applied to improve the antenna performance for numerous implantable scenarios and biomedical applications. The proposed antenna with EGB ground plane is designed for both the simplified model and anatomical realistic models for the human body and executed the performance in bio-environment. To approve the results of implantable antennas more correctly, simulation is analyzed using anatomical realistic human models. The ultimate design has the whole dimension is 15.2 x 8.8 m2. The thickness of the antenna is about 0.8 mm. FR4 is chosen as the substrate material and Copper is chosen as the patch material. The antenna is enclosed biocompatible material with silicon inside the tissue in order to protect patient safety. Significant parameters such as S11 parameter, Far field (radiation pattern), VSWR, Efficiency, Directivity, Gain of the proposed antenna have calculated and measured the performance both the simplified and realistic human models. Comparison Analysis of S11 parameter for different substrate materials and patch materials have observed. The radiation mechanism and modified design of the implantable antenna reducing Specific Absorption Rate (SAR) for safety issues. All the simulation results and measurements are obtained from CST Microwave Studio to validate the design.


2015 ◽  
Vol 8 (8) ◽  
pp. 1253-1263 ◽  
Author(s):  
R. Hafezifard ◽  
Jalil Rashed-Mohassel ◽  
Mohammad Naser-Moghadasi ◽  
R. A. Sadeghzadeh

A circularly polarized (CP) and high gain Microstrip antenna is designed in this paper using metamaterial concepts. The antenna, built on a metamaterial substrate, showed significant size reduction and less mutual coupling in an array compared with similar arrays on conventional substrates. Demonstrated to have left-handed magnetic characteristics, the methodology uses complementary split-ring resonators (SRRs) placed horizontally between the patch and the ground plane. In order to reduce mutual coupling in the array structure, hexagonal-SRRs are embedded between antenna elements. The procedure is shown to have great impact on the antenna performance specifically its bandwidth which is broadened from 400 MHz to 1.2 GHz for X-band and as well as its efficiency. The structure has also low loss and improved standing wave ratio and less mutual coupling. The results show that a reduction of 26.6 dB in mutual coupling is obtained between elements at the operation frequency of the array. Experimental data show a reasonably good agreement between simulation and measured results.


2014 ◽  
Vol 7 (6) ◽  
pp. 791-796 ◽  
Author(s):  
M. Naser-Moghadasi ◽  
L. Asadpor

A small and compact ultra-wideband (UWB) aperture antenna with extended band-notched design is proposed. The antenna is composed of a rectangular aperture on ground plane of a printed circuit board and a fork-like exciting stub. The presented co-planar wave guide triple-fed antenna is easy to be applied with RF and microwave circuitry for low manufacturing cost. The antenna is successfully designed, implemented, and measured. A compact aperture area of 12.5 × 23 mm2 is acquired with promising performances, including broadband matched impedance and stable radiation patterns. The correlation between the mode-based field distributions and radiation patterns is discussed. Extended from the proposed antenna, one advanced band-notched (5–6 GHz) designs are also presented as a desirable feature for UWB applications.


Author(s):  
Ashish Singh ◽  
Krishnananda Shet ◽  
Durga Prasad

In this chapter, ultra wide band angular ring antenna has been proposed for wireless applications. It has been observed that antenna resonate from 2.9 to 13.1 GHz which has 10.2 GHz bandwidth. Further, it is observed that antenna has nearly omni-directional radiation pattern for E and H-plane at 3.5, 5.8, and 8.5 GHz. The theoretical analysis of the proposed has been done using circuit theory analysis. It was also found using simulation that antenna has good input and output response of 0.2 ns. Proposed antenna measured, simulated, and theoretical results matches for antenna characteristics, i.e., reflection coefficient and radiation pattern. Bandwidth of antenna lies between 2.9 and 13.1 GHz, so this antenna is suitable for Wi-Fi, Wi-Max, digital communication system (DCS), satellite communication, and 5G applications.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1559
Author(s):  
Adam R. H. Alhawari ◽  
Tale Saeidi ◽  
Abdulkarem Hussein Mohammed Almawgani ◽  
Ayman Taher Hindi ◽  
Hisham Alghamdi ◽  
...  

A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8–31 GHz) and vertically polarized (7.6–37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7–3.85 GHz and 5–40 GHz are achieved. Low mutual coupling of less than −22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with = 1.4 and h= 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 104. After optimizing the proposed UWB-MIMO antenna’s characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


This research article gives a detailed insight of the design, simulation of a compact circular shaped microstrip patch antenna that is fed using a coplanar waveguide feed (CPW for practical wireless communication applications). The antenna is typically designed for Ultra wideband (1.46-6GHz), Bluetooth (2.4GHz), ZIGBEE (2.4GHz), WLAN (5.15- 5.35 GHz and 5.725- 5.825), Wi-Fi (2.4-2.485GHz) and HIPERLAN-2(5.15 - 5.35 GHz and 5.470 -5.725GHz) wireless applications with stop band characteristics for the H (partial C band). The proposed antenna has an overall packaged structure dimensions of 78 x75 x1.605 mm3 and is fabricated on FR4 substrate as a circular patch antenna with a coplanar ground .The commercially available laminate FR4 substrate that is used has a dielectric constant of 4.4, height of 1.6mm and a loss tangent of 0.0024.The prospective antenna shows a simulated impedance bandwidth of 4.54 GHz. The coplanar waveguide feeding used with this antenna helps in improving antenna performance in terms of its impedance bandwidth as this geometry helps in creating multiple current loops at the antenna structure, thereby exciting nearby frequencies that merge to show a broadband of operation. The antenna’s operational bandwidth is also improved by the concept of modified ground, in which triangular and rectangular shapes are added symmetrically on both sides of ground plane that provide a better fringing effect and hence an improved bandwidth.


2019 ◽  
Vol 8 (3) ◽  
pp. 57-63
Author(s):  
A. Zitouni ◽  
N. Boukli-Hacene

In this article, a novel T-shaped compact dielectric resonator antenna for ultra-wideband (UWB) application is presented and studied. The proposed DRA structure consists of T-shaped dielectric resonator fed by stepped microstrip monopole printed antenna, partial ground plane and an inverted L-shaped stub. The inverted L-shaped stub and parasitic strip are utilized to improve impedance bandwidth. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. From the simulation results, it is found that the proposed antenna structure operates over a frequency range of 3.45 to more than 28 GHz with a fractional bandwidth over 156.12%, which covers UWB application, and having better gain and radiation characteristics.


Sign in / Sign up

Export Citation Format

Share Document