scholarly journals Skin Cancer Classification using Random Forest

Skin cancer is a very big health issue in today’s fastgrowing population not only for old age people but for all age groups. We are classifying skin cancer of a person according to dermatoscopic images into seven different types. We handle this issue utilizing the HAM10000 (Human-Against-Machine with 10000 training images) data-set. The finalized dataset includes 10001 dermatoscopic pictures which are released as a readiness set for academic machine learning purposes and are openly available through the ISIC archive. We are classifying skin cancer of a person according to dermatoscopic images into seven different types.Through this research a person will get to know that if he/she suffering from any kind of skin cancer or not, so before going to consult any doctor a person will have some assurance about skin cancer.

Author(s):  
Jun Pei ◽  
Zheng Zheng ◽  
Hyunji Kim ◽  
Lin Song ◽  
Sarah Walworth ◽  
...  

An accurate scoring function is expected to correctly select the most stable structure from a set of pose candidates. One can hypothesize that a scoring function’s ability to identify the most stable structure might be improved by emphasizing the most relevant atom pairwise interactions. However, it is hard to evaluate the relevant importance for each atom pair using traditional means. With the introduction of machine learning methods, it has become possible to determine the relative importance for each atom pair present in a scoring function. In this work, we use the Random Forest (RF) method to refine a pair potential developed by our laboratory (GARF6) by identifying relevant atom pairs that optimize the performance of the potential on our given task. Our goal is to construct a machine learning (ML) model that can accurately differentiate the native ligand binding pose from candidate poses using a potential refined by RF optimization. We successfully constructed RF models on an unbalanced data set with the ‘comparison’ concept and, the resultant RF models were tested on CASF-2013.5 In a comparison of the performance of our RF models against 29 scoring functions, we found our models outperformed the other scoring functions in predicting the native pose. In addition, we used two artificial designed potential models to address the importance of the GARF potential in the RF models: (1) a scrambled probability function set, which was obtained by mixing up atom pairs and probability functions in GARF, and (2) a uniform probability function set, which share the same peak positions with GARF but have fixed peak heights. The results of accuracy comparison from RF models based on the scrambled, uniform, and original GARF potential clearly showed that the peak positions in the GARF potential are important while the well depths are not. <br>


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


2019 ◽  
Vol 12 (3) ◽  
pp. 1209-1225 ◽  
Author(s):  
Christoph A. Keller ◽  
Mat J. Evans

Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of chemistry solvers have not delivered transformative change. We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chemistry in atmospheric chemistry transport models. Our training data consist of 1 month (July 2013) of output of chemical conditions together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train random forest regression models to predict the concentration of each transported species after the integrator, based on the physical and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2). We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The machine-learning-driven GEOS-Chem model compares well to the standard simulation. For ozone (O3), errors from using the random forests (compared to the reference simulation) grow slowly and after 5 days the normalized mean bias (NMB), root mean square error (RMSE) and R2 are 4.2 %, 35 % and 0.9, respectively; after 30 days the errors increase to 13 %, 67 % and 0.75, respectively. The biases become largest in remote areas such as the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition. Over polluted regions the model error is less than 10 % and has significant fidelity in following the time series of the full model. Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions. For other species such as inorganic bromine species and short-lived nitrogen species, errors become large, with NMB, RMSE and R2 reaching >2100 % >400 % and <0.1, respectively. This proof-of-concept implementation takes 1.8 times more time than the direct integration of the differential equations, but optimization and software engineering should allow substantial increases in speed. We discuss potential improvements in the implementation, some of its advantages from both a software and hardware perspective, its limitations, and its applicability to operational air quality activities.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hai-Bang Ly ◽  
Thuy-Anh Nguyen ◽  
Binh Thai Pham

Soil cohesion (C) is one of the critical soil properties and is closely related to basic soil properties such as particle size distribution, pore size, and shear strength. Hence, it is mainly determined by experimental methods. However, the experimental methods are often time-consuming and costly. Therefore, developing an alternative approach based on machine learning (ML) techniques to solve this problem is highly recommended. In this study, machine learning models, namely, support vector machine (SVM), Gaussian regression process (GPR), and random forest (RF), were built based on a data set of 145 soil samples collected from the Da Nang-Quang Ngai expressway project, Vietnam. The database also includes six input parameters, that is, clay content, moisture content, liquid limit, plastic limit, specific gravity, and void ratio. The performance of the model was assessed by three statistical criteria, namely, the correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE). The results demonstrated that the proposed RF model could accurately predict soil cohesion with high accuracy (R = 0.891) and low error (RMSE = 3.323 and MAE = 2.511), and its predictive capability is better than SVM and GPR. Therefore, the RF model can be used as a cost-effective approach in predicting soil cohesion forces used in the design and inspection of constructions.


Different mathematical models, Artificial Intelligence approach and Past recorded data set is combined to formulate Machine Learning. Machine Learning uses different learning algorithms for different types of data and has been classified into three types. The advantage of this learning is that it uses Artificial Neural Network and based on the error rates, it adjusts the weights to improve itself in further epochs. But, Machine Learning works well only when the features are defined accurately. Deciding which feature to select needs good domain knowledge which makes Machine Learning developer dependable. The lack of domain knowledge affects the performance. This dependency inspired the invention of Deep Learning. Deep Learning can detect features through self-training models and is able to give better results compared to using Artificial Intelligence or Machine Learning. It uses different functions like ReLU, Gradient Descend and Optimizers, which makes it the best thing available so far. To efficiently apply such optimizers, one should have the knowledge of mathematical computations and convolutions running behind the layers. It also uses different pooling layers to get the features. But these Modern Approaches need high level of computation which requires CPU and GPUs. In case, if, such high computational power, if hardware is not available then one can use Google Colaboratory framework. The Deep Learning Approach is proven to improve the skin cancer detection as demonstrated in this paper. The paper also aims to provide the circumstantial knowledge to the reader of various practices mentioned above.


2020 ◽  
Vol 8 (6) ◽  
pp. 1623-1630

As huge amount of data accumulating currently, Challenges to draw out the required amount of data from available information is needed. Machine learning contributes to various fields. The fast-growing population caused the evolution of a wide range of diseases. This intern resulted in the need for the machine learning model that uses the patient's datasets. From different sources of datasets analysis, cancer is the most hazardous disease, it may cause the death of the forbearer. The outcome of the conducted surveys states cancer can be nearly cured in the initial stages and it may also cause the death of an affected person in later stages. One of the major types of cancer is lung cancer. It highly depends on the past data which requires detection in early stages. The recommended work is based on the machine learning algorithm for grouping the individual details into categories to predict whether they are going to expose to cancer in the early stage itself. Random forest algorithm is implemented, it results in more efficiency of 97% compare to KNN and Naive Bayes. Further, the KNN algorithm doesn't learn anything from training data but uses it for classification. Naive Bayes results in the inaccuracy of prediction. The proposed system is for predicting the chances of lung cancer by displaying three levels namely low, medium, and high. Thus, mortality rates can be reduced significantly.


Author(s):  
Samer Hamed ◽  
Abdelwadood Mesleh ◽  
Abdullah Arabiyyat

This paper presents a computer-aided design (CAD) system that detects breast cancers (BCs). BC detection uses random forest, AdaBoost, logistic regression, decision trees, naïve Bayes and conventional neural networks (CNNs) classifiers, these machine learning (ML) based algorithms are trained to predicting BCs (malignant or benign) on BC Wisconsin data-set from the UCI repository, in which attribute clump thickness is used as evaluation class. The effectiveness of these ML algorithms are evaluated in terms of accuracy and F-measure; random forest outperformed the other classifiers and achieved 99% accuracy and 99% F-measure.


2021 ◽  
Vol 8 (3) ◽  
pp. 209-221
Author(s):  
Li-Li Wei ◽  
Yue-Shuai Pan ◽  
Yan Zhang ◽  
Kai Chen ◽  
Hao-Yu Wang ◽  
...  

Abstract Objective To study the application of a machine learning algorithm for predicting gestational diabetes mellitus (GDM) in early pregnancy. Methods This study identified indicators related to GDM through a literature review and expert discussion. Pregnant women who had attended medical institutions for an antenatal examination from November 2017 to August 2018 were selected for analysis, and the collected indicators were retrospectively analyzed. Based on Python, the indicators were classified and modeled using a random forest regression algorithm, and the performance of the prediction model was analyzed. Results We obtained 4806 analyzable data from 1625 pregnant women. Among these, 3265 samples with all 67 indicators were used to establish data set F1; 4806 samples with 38 identical indicators were used to establish data set F2. Each of F1 and F2 was used for training the random forest algorithm. The overall predictive accuracy of the F1 model was 93.10%, area under the receiver operating characteristic curve (AUC) was 0.66, and the predictive accuracy of GDM-positive cases was 37.10%. The corresponding values for the F2 model were 88.70%, 0.87, and 79.44%. The results thus showed that the F2 prediction model performed better than the F1 model. To explore the impact of sacrificial indicators on GDM prediction, the F3 data set was established using 3265 samples (F1) with 38 indicators (F2). After training, the overall predictive accuracy of the F3 model was 91.60%, AUC was 0.58, and the predictive accuracy of positive cases was 15.85%. Conclusions In this study, a model for predicting GDM with several input variables (e.g., physical examination, past history, personal history, family history, and laboratory indicators) was established using a random forest regression algorithm. The trained prediction model exhibited a good performance and is valuable as a reference for predicting GDM in women at an early stage of pregnancy. In addition, there are certain requirements for the proportions of negative and positive cases in sample data sets when the random forest algorithm is applied to the early prediction of GDM.


2020 ◽  
Author(s):  
Piyush Mathur ◽  
Tavpritesh Sethi ◽  
Anya Mathur ◽  
Kamal Maheshwari ◽  
Jacek Cywinski ◽  
...  

UNSTRUCTURED Introduction The COVID-19 pandemic exhibits an uneven geographic spread which leads to a locational mismatch of testing, mitigation measures and allocation of healthcare resources (human, equipment, and infrastructure).(1) In the absence of effective treatment, understanding and predicting the spread of COVID-19 is unquestionably valuable for public health and hospital authorities to plan for and manage the pandemic. While there have been many models developed to predict mortality, the authors sought to develop a machine learning prediction model that provides an estimate of the relative association of socioeconomic, demographic, travel, and health care characteristics of COVID-19 disease mortality among states in the United States(US). Methods State-wise data was collected for all the features predicting COVID-19 mortality and for deriving feature importance (eTable 1 in the Supplement).(2) Key feature categories include demographic characteristics of the population, pre-existing healthcare utilization, travel, weather, socioeconomic variables, racial distribution and timing of disease mitigation measures (Figure 1 & 2). Two machine learning models, Catboost regression and random forest were trained independently to predict mortality in states on data partitioned into a training (80%) and test (20%) set.(3) Accuracy of models was assessed by R2 score. Importance of the features for prediction of mortality was calculated via two machine learning algorithms - SHAP (SHapley Additive exPlanations) calculated upon CatBoost model and Boruta, a random forest based method trained with 10,000 trees for calculating statistical significance (3-5). Results Results are based on 60,604 total deaths in the US, as of April 30, 2020. Actual number of deaths ranged widely from 7 (Wyoming) to 18,909 (New York).CatBoost regression model obtained an R2 score of 0.99 on the training data set and 0.50 on the test set. Random Forest model obtained an R2 score of 0.88 on the training data set and 0.39 on the test set. Nine out of twenty variables were significantly higher than the maximum variable importance achieved by the shadow dataset in Boruta regression (Figure 2).Both models showed the high feature importance for pre-existing high healthcare utilization reflective in nursing home beds per capita and doctors per 100,000 population. Overall population characteristics such as total population and population density also correlated positively with the number of deaths.Notably, both models revealed a high positive correlation of deaths with percentage of African Americans. Direct flights from China, especially Wuhan were also significant in both models as predictors of death, therefore reflecting early spread of the disease. Associations between deaths and weather patterns, hospital bed capacity, median age, timing of administrative action to mitigate disease spread such as the closure of educational institutions or stay at home order were not significant. The lack of some associations, e.g., administrative action may reflect delayed outcomes of interventions which were not yet reflected in data. Discussion COVID-19 disease has varied spread and mortality across communities amongst different states in the US. While our models show that high population density, pre-existing need for medical care and foreign travel may increase transmission and thus COVID-19 mortality, the effect of geographic, climate and racial disparities on COVID-19 related mortality is not clear. The purpose of our study was not state-wise accurate prediction of deaths in the US, which has already been challenging.(6) Location based understanding of key determinants of COVID-19 mortality, is critically needed for focused targeting of mitigation and control measures. Risk assessment-based understanding of determinants affecting COVID-19 outcomes, using a dynamic and scalable machine learning model such as the two proposed, can help guide resource management and policy framework.


2021 ◽  
Vol 2 (2) ◽  
pp. 40-47
Author(s):  
Sunil Kumar ◽  
Vaibhav Bhatnagar

Machine learning is one of the active fields and technologies to realize artificial intelligence (AI). The complexity of machine learning algorithms creates problems to predict the best algorithm. There are many complex algorithms in machine learning (ML) to determine the appropriate method for finding regression trends, thereby establishing the correlation association in the middle of variables is very difficult, we are going to review different types of regressions used in Machine Learning. There are mainly six types of regression model Linear, Logistic, Polynomial, Ridge, Bayesian Linear and Lasso. This paper overview the above-mentioned regression model and will try to find the comparison and suitability for Machine Learning. A data analysis prerequisite to launch an association amongst the innumerable considerations in a data set, association is essential for forecast and exploration of data. Regression Analysis is such a procedure to establish association among the datasets. The effort on this paper predominantly emphases on the diverse regression analysis model, how they binning to custom in context of different data sets in machine learning. Selection the accurate model for exploration is the most challenging assignment and hence, these models considered thoroughly in this study. In machine learning by these models in the perfect way and thru accurate data set, data exploration and forecast can provide the maximum exact outcomes.


Sign in / Sign up

Export Citation Format

Share Document