scholarly journals Partial replacement of fine aggregate with Copper slag and marble dust powder in geo-polymer concrete: A review

2021 ◽  
Vol 889 (1) ◽  
pp. 012070
Author(s):  
Amrinder Singh ◽  
Shalika Mehta

Abstract -As of late the ascent of substantial creation costs has consistently been a worry of substantial makers and customers. Using current waste to override concrete and some poIn ongoing years the ascent of substantial creation costs has consistently been a worry of substantial makers and buyers. Using present day waste to override concrete and some bit of all out can diminish its cost and environmental dirt of all out can decrease its cost and natural tainting. The mark to the purpose of this paper to audit the shot at powder made from marble dust close by the copper slag as an in part substitution to fine aggregate all out in geo-polymer concrete. Marble dust powder was used in mix in comprise copper slag as in part substitution to fine aggregate in level of 10%, 20%, 30%, 40% and 50%. The strength of geo-polymer concrete was tested after 7 & 28 days. Result shows that compressive strength is increased after the replacement of 60% of copper slag and marble dust powder to fine aggregate and also flexural strength and split tensile strength increases strength upto 60% and 80% after replacement. These discoveries of the examination express that powdered marble dust will be utilized as the conceivable substitution material to fine aggregate to give maximum strength copper slag geo-polymer concrete.

2018 ◽  
Vol 7 (2.23) ◽  
pp. 443
Author(s):  
USHAKRANTI J ◽  
SRINIVASU K ◽  
NAGA SAI

Currently situation, improvement of infrastructure has created an excessive demand for herbal sand, which makes it greater expensive and leads to environmental imbalances. The utilization of suitable sustainable choice materials proves that it is the most efficacious choice to traditional concrete materials and can take care of the surrounding environment. Copper slag is an industrial byproduct of copper production. Copper slag is a high-gravity glassy granular material. This paper reports some experimental studies on the outcome of partially changed sand from impact of copper slag on the mechanical houses of concrete. M30 concrete adopts copper slag plan and partly substitutes high-quality combination fines by means of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80% and 100%. The mechanical properties of concrete measured in the laboratory encompass compressive strength, split tensile strength and bending tensile strength. The have an impact on of partly replacing the quality aggregates with copper slag on the compressive strength, the cut up tensile power of the cylinder and the bending power of the prism has been evaluated. Water absorption assessments have been also conducted to report the impact of copper slag on the absorption price of concrete. Test results affords that it is feasible to utilize copper slag as best aggregate in concrete. 


Author(s):  
Sakthivel S ◽  
Velumani M ◽  
Yuvaraj K

Copper slag obtained during smelting to extract copper metal from the ore. The review of the characteristics of copper slag encourages several applications such as for manufacture of cement, in aggregates, Landfill, glass, tiles etc. Many researchers have already found it is possible to use copper slag as a concrete aggregate. The workability and strength characteristics were assessed through a series of test on different mix proportions at 10% incremental copper slag by weight replacement of sand. M35 grade concrete was used and the tests were conducted for various proportions of copper slag replacement with sand of 0%,10%,20%,30%,40%,50%,60%,70%,80%,90%,100% in concrete. Then the concrete where cured for 7, 28, 60 and 90 days. Then they were tested for compressive strength, split tensile strength, and flexural strength. Finally the results were compared with the concrete made with the Portland Pozzolana cement (PPC) and fine aggregate (sand).  


Concrete is a widely used material in all construction work. The aim of the project is to study the behavior of concrete with replacement of E waste. The fine aggregate and coarse aggregate are naturally available due to increase in demand it is over exploited. The waste utilization is sustainable solution to environmental problems Waste from electric and electronic equipment is used as an E waste replacement for coarse aggregate in concrete which is used in the construction .Therefore the effects have been made to study the use of E waste components as a partial replacement of coarse aggregate in 5%, 10% and 15%. To determine the optimum percentage of E waste that can be replaced for coarse aggregate the compressive strength and split tensile strength of concrete to be studied. After determining the optimum percentage of E waste that can be replaced with coarse aggregate. The comparison of the conventional and optimum percentage of E waste replaced with concrete has been done


Copper slag is a rough blasting grit or a by-product acquired by the process of copper smelting and refining. These copper slags are recycled for copper recovery. In this paper, we analysed copper slag’s feasibility and evaluate its total competence in M25 grade concrete. In this observation, a concrete mixture is applied with copper slag as a fine aggregate ranging from 0%, 20%, 40%, 60%, 80%, and 100% respectively. The strength of copper slag’s implementation is accomplished on the basis of concrete’s flexural strength, compressive strength and splitting tensile strength. From the obtained results, in concrete 40% percentage of copper slag is used as sand replacement. On 28 days, the modulus of elasticity increased up to 32%, the compressive strength increased up to 34% and flexural strength is increased to 6.2%. From this experiment, it is proved technically that replacing sand using copper slag as a fine mixture in M25 grade concrete.


Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


In this investigation, conventional concrete was made with replacing the sand by 80 % of M-sand and the cement by fillet material silica fume in varying percentages say 5%, 10 % , and 15%, to study the compressive strength, split tensile strength and flexural strength. In order to the maximum strength was attained at 10% of silica fume. The result showed that by increasing the silica fume content, the strength of the M-sand concrete was decreased because higher fineness of silica fume content decreases the strength of the M-sand concrete. Secondly polymer concrete with unsaturated polyester resin with hardener MEKP, Cobalt as the accelerator and silica fume in varying percentages say 0%, 5% and 10% was made to study the compressive strength and split tensile strength of polymer concrete. In improved silica fume content the strength was high. Polymer concrete improved the mechanical properties. Polymer concrete system was mainly useful to fill the micro voids. In this research, the maximum strength was attained at 5% of silica fume filler added with polymer concrete. Thus the high strength of the concrete was obtained due to the pozzolanic reaction with the silica fume.


Now a days increase in population increases the demand of concrete for construction purpose and Aggregates are the important constituents in concrete.Re-use of demoliation waste avoids the problem of waste disposal and is also helpful in reducing the gap between demand and supply of fresh aggregates. This research deals with partial replacement of natural coarse aggregates (NCA) with recycled coarse aggregates (RCA) of age group 30 years and 35 years in different proportions like 20%, 30%, 40% . For this, M20 grade of concrete is adopted. Curing of specimens were done for 7days and 28 days to attain the maximum strengths. Partial replacement of fine aggregate with Granite powder at 5%, 10%, 15% were done to reduce the waste percentage as well to gain more strength. After casting the specimens of RCA with Granite powder replacement, curing was done and the specimens were tested for compressive and tensile strengths. Obtained results of compressive and tensile strengths of RCA concrete mix were compared with conventional concrete. In this direction, an experimental investigation of compressive and tensile strength was undertaken to use RCA as a partial replacement in concrete. It was observed that the concrete with recycled aggregates of 30years and 35years age group achieved maximum compressive strength of 29.03 N/mm2 , 28.96 N/mm2 and tensile strength of 11.91 N/mm2 , 10.34 N/mm2 were obtained at 40%replacement of RCA respectively. It is found that the compressive strength and Split tensile strength of RAC with copper slag was increased 8.20% and 2.90% when compared with the RAC.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


Author(s):  
C. Mounika

Abstract: The main aim of this project is to evaluate mechanical properties of interlocking bricks using coir fiber powder as a substitute of cement and rubber tire waste as a substitute of fine aggregate (sand) with varying percentages of 0%, 1%, 2% & 3% and 0%, 5%, 10% & 15% in concrete and to help in solving environmental problem produced from disposing of waste tires and coir husk partially. Additionally fly ash was also added with varying percentages of 5%, 10% and 15% as a substitute to cement in a concrete mix. Several laboratory tests such as compressive strength test, flexural strength test, split tensile strength test, water absorption test and density of concrete etc., were conducted on hardened concrete specimen to achieve the optimum usage of crumb rubber tire waste and coir fiber powder in mix proportion of concrete. It is found that the maximum compressive strength value of coir fiber based crumb rubber interlocking brick was obtained at 1%CF + 5%FA + 5%CR, flexural strength value and split tensile strength value of coir fiber based crumb rubber concrete block was obtained at 1%CF + 5%FA + 5%CR. From the final conclusion or outcome of the project, optimum usage of coir fiber powder is 3% and crumb rubber is 5%. Keywords: coir fiber powder, crumb rubber tire waste, mechanical properties, interlocking bricks & optimum usage.


2019 ◽  
Vol 8 (4) ◽  
pp. 3516-3519

The rapid growth of the population leads to a requirement of infrastructure this leads to scarcity of raw material for construction such as cement and sand. The other hand pollution growing due to thermal power plants, granite polishing unit and plastic waste this need to be removed. This gives an idea of using this compound as a raw material in concrete making. This concept found to effective minimizes disposal of fly, granite power and plastic wastes, and leads towards Green Building Concepts. In this investigation of M25 grade normal concrete is made by cement, sand, and aggregate which is tested and compared by special concrete. The concrete mix is prepared as per 10262 -2019 by adding replacing small amount of Fly ash in place of cement OPC 53 grade, and fine aggregate is prepared by partial replacing with granite powder (0%,10%,20%,30%)and another mix is prepared by adding 0.5 nylon fiber, partial replacement of fine aggregate with granite powder (0%,10%,20%,30%)specimens are casted . The casted specimens are tested for split tensile strength and compressive strength 7, 14 and 28 day’s respectively and these results also compared with each other. I t is observed that compressive strength and split tensile of concrete at 28days of curing show max value when compared with normal concrete. When the percentage of granite powder increases to 30% it shows that a decrease in both split tensile strength of concrete and compressive strength. When we added fiber to the concrete there is an increase in compressive strength and split tensile strength but there is a not much increase in compressive strength but increase in split tensile strength


Sign in / Sign up

Export Citation Format

Share Document