scholarly journals Circular Patch FSS Micro-Strip Antenna for C Band Applications

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2111-2113

The present paper relates to an antenna with circular patch micro-strip for the applications of c band. The antenna has advantages like low profile and high selectivity, compact size, less weight. A circular type patch is chosen for the antenna over a rectangle type patch due to some advantages of circular type antenna. The size of the antenna is 60mm x 60mm x 0.8mm with an array of 3×2 size. The specification for the FR4 epoxy type substrate are: 0.8mm height and 4.4 value of permittivity. The implemented antenna designing carries characteristics of dual band and the two resonating frequencies are 5.7 GHz and 6.06 GHz which gives significant gain. The simulation is done by using a HFFS software.

2019 ◽  
Vol 61 (10) ◽  
pp. 2282-2287 ◽  
Author(s):  
Yapeng Li ◽  
Zhipeng Zhao ◽  
Zhaoyang Tang ◽  
Yingzeng Yin

2019 ◽  
Vol 11 (7) ◽  
pp. 694-702
Author(s):  
Murli Manohar ◽  
Rakhesh Singh Kshetrimayum ◽  
Anup Kumar Gogoi

AbstractA low profile super-wideband polarization diversity printed monopole antenna with dual band-notched characteristics is presented the first time. The designed antenna comprises two arched shaped radiating elements with two triangular tapered microstrip feed lines (TTMFL) and two arched shaped partial ground planes, which covers an enormously wide impedance bandwidth (BW) from 1.2 to 25 GHz (ratio BW of 20.8:3) for reflection coefficient |S11| < −10 dB. To ensure the high port isolation (better than − 30 dB) between two feeding ports over the whole bands, two analogous antennas have been kept perpendicular to each other at a distance of 1 mm. In addition, the dual band-notched performance in wireless local area network (5–6 GHz) and X-band (7.2–8.5 GHz) is generated by employing a pair of open-circuited stubs (L-shaped stub and horizontal stub) to the TTMFL. Envelop correlation coefficient has been computed to study the polarization diversity performance. Finally, the proposed antenna was fabricated and tested successfully. Measured results indicate that the proposed antenna is an appropriate candidate for the polarization diversity applications. The proposed antenna has a compact size of 40 × 70 × 0.787 mm3, high isolation, and occupies a small space compared with the existing antennas.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Mahdi Jalali ◽  
Tohid Sedghi ◽  
Shahin Shafei

A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth forS11<-10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.


2020 ◽  
Vol 56 (23) ◽  
pp. 1259-1262
Author(s):  
Shicheng Liu ◽  
Xuedao Wang ◽  
Hanqian Zhang ◽  
Kezhuo Zhang ◽  
Zeyu Ding ◽  
...  

2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000172-000183
Author(s):  
Viacheslav Turgaliev ◽  
Dmitry Kholodnyak ◽  
Jens Müller ◽  
Matthias A. Hein

Design of microwave filters for portable electronics is complicated by conflicting requirements to be met simultaneously such as high selectivity, low insertion loss and compact size. Substrate integrated waveguide (SIW) technology allows designing low-profile high-Q resonators and low-loss bandpass filters based thereof. However, SIW filters are not well-suited for telecommunication applications because of remarkably large size in plane. The size of a SIW cavity can be dramatically reduced by a capacitive loading. Capacitively loaded cavities (CLCs) operating in the TM110 mode can be as small as 1/8 of the guided wavelength and even smaller, i.e. comparable in size with lumped-element resonators. Although the unloaded Q-factor decreases proportionally to cavity size, miniaturized CLCs can exhibit much higher Q-factor than that of lumped-element resonators. This paves the way for designing small-size and low-loss filters for wireless communications and different applications. Miniaturized capacitively loaded SIW cavities are favorably implemented by means of the low temperature co-fired ceramics (LTCC) technology. The goal of the paper is to demonstrate manifold possibilities and flexibility offered by the LTCC technology to the design of advanced microwave filters on CLCs. Different design and manufacturing aspects are considered. Various design examples of high-performance LTCC resonators and filters for single- and dual-band wireless applications are presented. The designed resonators and filters were manufactured using the commercial DuPont Green Tape 951 LTCC system. The LTCC filters on miniaturized CLCs are shown advantageous with regard to small size, low loss, and absence of spurious response over a wide frequency range.


2020 ◽  
Vol 12 (10) ◽  
pp. 1012-1019
Author(s):  
Yang Xiong ◽  
Wei Zhang ◽  
Yue-Peng Zhong ◽  
Li-Tian Wang

AbstractIn this paper, dual-band and tri-band bandpass filters (BPFs) with fully independent and controllable passbands based on multipath-embedded resonators are presented. The dual-band BPF consists of two double open-ended stub-loaded terminal-shorted resonators (DOESL-TSRs) with a common via-hole connected along the symmetric plane of the filter. Based on DOESL-TSRs, a triple open-ended stub-loaded terminal-shorted resonator (TOESL-TSR) is proposed in the design of tri-band BPFs. The resonant characteristics of DOESL-TSR/TOESL-TSR are analyzed by the numerical calculation method. The measured results of the dual-band BPF show that the center frequencies (CFs) are located at 2.595 and 5.75 GHz, respectively, with 3 dB fraction bandwidth (FBWs) of 15 and 12.8%. The measured CFs of the tri-band BPF are located at 2.545, 3.775, and 5.95 GHz, respectively, with 3 dB FBWs of 9.8, 9.3, and 5.5%. Both of the filters exhibit the merits of fully independent and controllable passbands, high selectivity, and compact size.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1697
Author(s):  
Ahmed A. Ibrahim ◽  
Wael A. E. Ali ◽  
Mahmoud A. Abdelghany

Two dual-band second-order highly selective band pass filters operated at 3.5/5.5 GHz and 3.5/6 GHz for wireless local area network /worldwide interoperability for microwave access WLAN/WiMAX applications are introduced in this paper. The designed filters are inspired of utilizing two coupled open-loop resonators loaded with stub, spiral resonators and lumped capacitors. The filters are designed based on calculating the desired coupling matrix and the external quality factor. The first and the second filters are designed at the fundamental mode of 3.5 GHz then the first filter is loaded with two spiral resonators in the microstrip line to produce the desired band stop behaviour, which in turn achieves the second pass-band. However, the second band of the second filter is achieved by loading the stub with the lumped capacitors, which controls the second mode. The centre frequency of the second band is adjusted by varying the lumped capacitors values. The two designed filters have insertion loss less than 0.7 dB in the pass-band region, high selectivity with more than 4 transmission zeros and more than 20 dB attenuation level in the stop band region. The suggested filter has compact size and high selectivity with tunability behavior. The two filters are fabricated and measured to validate the simulated results.


Sign in / Sign up

Export Citation Format

Share Document