scholarly journals Strength and Durability Properties on Fiber Reinforced Concrete by Replacing Fine Aggregate with Stone Powder

2019 ◽  
Vol 8 (2) ◽  
pp. 1946-1950

The goal for taking p this exploration is because of the at that now a days the natural sand affirming to Indian standards is becoming scarcer and costlier because of nonaccessibility in time for the reason that law of land, unlawful digging by sand mafia etc… For this reason a motivation has been done to identify a new source of aggregates. The objective of this study is to verify the appropriateness, feasibility &forthcoming utilization of Stone powder for future years. Stone powder is a loss from the quarry preparing units. It accounts 30% of the residue from the quarry industry. Use of stone powder as a replacement of Natural sand reduces cost of construction but also it helps to reduce the wastage of material so it can be give a good impact to the environment. Hence in the current study an attempt has been made on concrete mix of grade M40 by experimenting the strength properties & durability of concrete by replacing Stone powder by 25%, 50%, 75% & 100% to Natural sand and expand the project the addition of steel fibers of 0.5%,0.75% and 1% have done and also the effect of curing of 3% of H2SO4 , HCI and Sea water on these concrete mixes are determined by immersing these cubes for 28 days, 90 days in above solutions and respective changes in compressive strength, tensile strength & weight reduction observed and it has been found that the compressive, split tensile strength of concrete made of stone powder increases nearly 17% and 60% with addition of steel fibers. The durability studies show a decrease of nearly 17% in compressive strength

Author(s):  
S. N. Manjunath ◽  
D. Mohammed Rafi ◽  
A. B. S. Dadapeer

Concrete is the most widely used composite construction material. Fine aggregate plays a very important role for imparting better properties to concrete in its fresh and hardened state. Generally, river sand was used as fine aggregate for construction. Due to the continuous mining of sand from riverbed led to the depletion of river sand and it became a scarce material. Also, sand mining from river bed caused a lot of environmental issues. As a substitute to river sand, Robo sand has been used. In this present experimental study a comparative study has been carried out to check the usability of Robo sand in place of natural sand. This study involves determination of some major properties of concrete like compressive strength, split tensile strength, flexural tensile strength and durability in acidic medium made of both the sands. Based on proposed studies, quality of Robo sand is equivalent to natural sand in many respects, such as cleanliness, grading, strength, angularity, specific gravity. Conclusion have been arrived that Robo sand produced from VSI (vertical shaft impact or) is a suitable and viable substitute to river sand and could be effectively used in making concrete which provides adequate strength and durability for the concrete. In the design of concrete structures, concrete is taken into account by taking its compressive strength value. The compressive strength of the concrete made of Robo sand is observed to be very nearer to the strength of the concrete made of natural sand in the present investigation, there by 100% replacement is reasonable.


The river sand is the natural sort of fine aggregate material which is employed within the concrete and mortar. It’s usually obtained from the river bed and mining has disastrous environment consequences. Rather than the river sand we are using M-sand as fine aggregate within the concrete. The event of acrylic concrete marks a crucial milestone in improving the merchandise quality and efficiency of the concrete. Usage of acrylic within the concrete will increase the strength and durability of the concrete. It enhances the performance of the concrete and increase energy absorption compared with plain concrete. Within the present work we are getting to analysis the strength properties of fiber reinforced M-sand concrete like compressive strength, flexural strength, split tensile strength, and bond strength.


2020 ◽  
Vol 13 (2) ◽  
pp. 137
Author(s):  
Dr. Akhmad Suryadi, BS., MT

The advancement era, the use of strapping band in the process of shipping goods was increases because of the more practical needs and stronger straps make the waste from strapping band was increases. With a large amount of waste by shredding it into smaller sizes it can be used as a substitute for fine aggregate in concrete mixture with synthetic fiber reinforced concrete concept at the Laboratory of Civil Engineering Politeknik Negeri Malang. The objectives of this research were to analyze the characteristics of concrete with the substitution of strapping band waste against fine aggregate in compressive strength and split tensile strength test. The research method including: aggregate test and strapping band test, the mix design of concrete mixture was using the reference SNI 03-2834-2000. The experiments sample for each variation of 0%, 5%, and 8% were performed with 24 cylinder specimens for compressive strength and 6 cylinder specimens for split tensile strength. The compressive strength on 28 days with 0%, 5%, and 8% variation resulted in 27.67 kg/cm2; 26.82 kg/cm2; 17.83 kg/cm2. The split tensile strength on 28 days with 0% 5%, and 8% variation resulted in 2.42 kg/cm2; 1.90 kg/cm2; 1.51 kg/cm2. The average weight of cylinder specimens with 0%, 5%, and 8% variation resulted in 12.62 kg; 12.04 kg; 11.61 kg. Substitution of strapping band waste decreases compressive strength, split tensile strength and average weight concrete. Key words : Strapping band waste, compressive strength, split tensile strength


Author(s):  
Venkateshwaran S ◽  
Alex Rajesh A

This is review report on High performance Concrete and is done by studying various journal papers on High performance concrete and this paper mainly concentrated on how to improve the Strength of concrete by using various fibers. Fibers are generally used in concrete to improve the tensile strength of the concrete. In fiber Reinforced Concrete (FRC) various types of fibers can be used such as polypropylene, cellulose, carbon, jute, PET fibers and Steel fibers. Among the above all steel fibers shows best performance comparing to other fibers. The flexural strength and compressive strength test are commonly done for every fiber and their values and comparisons are discussed in this report.


2020 ◽  
Vol 44 (5) ◽  
pp. 353-358
Author(s):  
Bode Venkata Kavyateja ◽  
Panga Narasimha Reddy

Industrial wastes generally pumped into water bodies and soil that would pollute the atmosphere. As a control measure, industrial wastes products utilized as waste building materials. In the present research, waste products from various industries like illuminate sludge and glass bottle powder used in different dosages as a replacement for fine aggregate and metakaolin used as a cement replacement. Split tensile strength and compressive strength of the concrete samples examined for M30 grade. Fine aggregate is substituted by glass bottle powder (i.e. 10 to 40%) and illuminate sludge (i.e. 10 to 30%). Metakaolin substituted for cement replacement (i.e. 4 to 12%). Glass bottle does not pollute the atmosphere, but the disposal of waste glass results wastage of land. Thereby glass bottle powder can be utilized as a cement replacement in the construction industry. Then the metakaolin and illuminate sludge are the waste products from the titanium product. The experiment performed to assess the strength properties by incorporating various industrial wastes in different dosages. Physical tests of all three products have carried out according to the code requirements. Three specimens have been tested for each industrial waste products ratio to examine the tensile and compressive strength of concrete at 7th day, 14th day and 28th day and eventually to cure to achieve the optimum strength of concrete. Addition of these industrial wastes into the concrete showed an outstanding improvement in modulus of rupture, split tensile strength and compressive strength at an early and later ages.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2011 ◽  
Vol 243-249 ◽  
pp. 5775-5778 ◽  
Author(s):  
M. Devi ◽  
K. Kannan

Demand for natural sand in concrete is increasing day by day since the available sand cannot meet the rising demand of construction sector. This paper reports the experimental study undertaken to investigate the influence of partial replacement of cement with Ground Granulated Blast Furnace Slag(GGBFS) in concrete containing quarry dust as fine aggregate. The cement was replaced by 10%, 20%, 30%, 40% and 50% of GGBFS and tests were conducted to determine the optimum level of replacement of GGBFS in quarry dust concrete. The specimens were subjected to compressive strength, split tensile strength, flexural strength, and bond strength tests at 7days, 28days, 56days, 90days and 150 days. The resistance to corrosion is evaluated based on the performance of the concrete for the penetration of chloride ions by means of impressed voltage technique in saline medium and Gravimetric weight loss method. Results herein reveal that an increase in slag proportion increases the strength properties and decreases the rate and amount of corrosion of reinforcement and among the various percentages of replacement 40% is found to be optimum with better strength and corrosion resistance properties.


2011 ◽  
Vol 261-263 ◽  
pp. 125-129 ◽  
Author(s):  
Venu Malagavelli ◽  
Neelakanteswara Rao Paturu

Construction field has experienced a growing interest in Fiber Reinforced Concrete (FRC) due to its various advantages. The disposal of industrial waste especially non biodegradable waste is creating a lot of problems in the environment. In the present investigation, an attempt has been made by using non biodegradable waste (polyester fibers) in the concrete to improve the crack resistance and strength. Concrete having compressive strength of 25MPa is used for this study. Samples were prepared by using various fiber contents starting from 0 to 6% of with an increment of 0.5% for finding Compressive strength, split tensile strength and flexural strengths. It is observed that, compressive strength, split tensile strength and flexural strengths of concretes is increasing as the fiber content is increased up to some extent.


2020 ◽  
Vol 7 (3) ◽  
pp. 115-139
Author(s):  
Sarkawt Karim ◽  
◽  
Azad Mohammed ◽  

This study describes two workability tests, compressive strength and tensile strength tests of high strength flowable concrete containing plastic fiber prepared from polyethylene terephthalate (PET) waste bottles. For the high fluidity mix Vebe time and V-funnel time tests were carried out. Results show that there is a Vebe time increase with PET fiber addition to concrete being increased with increasing fiber volume and fiber length. V-funnel time was found to reduce when up to 0.75% fiber volume is added to concrete, followed by an increase for larger fiber volumes. When fiber length is increase, there is more time increase, but in general, V-funnel time increase was lower than that of Vebe time, indicating a different influence of PET fiber on the compatibility and flowability. The measured V-funnel time for all mixes was found to conform to the limits of European specifications on the flowability of self compacting concrete. Small descending in compressive strength was recorded for RPET fiber reinforced concrete that reached 15.74 % for 1.5 percent fiber content with 10 mm fiber length. Attractive results was recorded in split tensile strength of RPET fibrous samples which resulted in improvement up to 63.3 % for 1.5 percent of 40 mm fiber length content.


Concrete is a widely used material in all construction work. The aim of the project is to study the behavior of concrete with replacement of E waste. The fine aggregate and coarse aggregate are naturally available due to increase in demand it is over exploited. The waste utilization is sustainable solution to environmental problems Waste from electric and electronic equipment is used as an E waste replacement for coarse aggregate in concrete which is used in the construction .Therefore the effects have been made to study the use of E waste components as a partial replacement of coarse aggregate in 5%, 10% and 15%. To determine the optimum percentage of E waste that can be replaced for coarse aggregate the compressive strength and split tensile strength of concrete to be studied. After determining the optimum percentage of E waste that can be replaced with coarse aggregate. The comparison of the conventional and optimum percentage of E waste replaced with concrete has been done


Sign in / Sign up

Export Citation Format

Share Document