scholarly journals Performance of Charcoal Coconut Shell Ash in the Asphalt Mixture under Long Term Aging

Improvement in transportation system is never been as easy as just providing links for better connection and network but more to do with the pavement quality of the road itself. Modification with agriculture waste is just another approach to enhance the performance of asphaltic concrete. In this study, a non-traditional bitumen modifier from a coconut shell which is the charcoal coconut shell ash (CCSA) was used. Addition of CCSA in bitumen with 0%, 2%, 4%, 6%, and 8% by weight of bitumen were investigated along with the laboratory stimulation of aging was applied in this study. Properties of modified asphalt mixture were determined using resilient modulus, dynamic creep and Marshall Stability test.. Results of samples with CCSA which underwent aging show some improvement in terms of the stability and permanent deformation characteristics. Resilient modulus, dynamic creep and Marshall Stability tests recorded the highest rates when compared to controlled sample. Hence, for more durable asphalt concrete and high serviceability it is recommended to use 2% to 4% of CCSA.

2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


Author(s):  
Ekarizan Shaffie ◽  
◽  
H.A. Rashid ◽  
Fiona Shiong ◽  
Ahmad Kamil Arshad ◽  
...  

Stone Mastic Asphalt (SMA) is a gap-graded hot mixture designed to provide higher resistance towards permanent deformation and rutting potential by 30% to 40% more than dense-graded asphalt, due to its stable aggregate skeleton structure. However, compared to other types of hot mix asphalt, SMA unfortunately has some shortcomings in term of its susceptibility towards moisture-induced damage due to its structure and excessive bitumen content in the composition. This research aims to assess the performance of a SMA mixture with steel fiber by enhancing overall stability, abrasion resistance, and, most importantly, moisture susceptibility. This study involved the incorporation of various steel fiber proportions of 0%, 0.3%, 0.5% and 0.7% by the total weight of mixture. The steel fiber modified SMA was made up of 6.0% PEN 60/70 bitumen content. The performance of SMA were evaluated through Marshall stability and flow test, Cantabro loss test and indirect tensile strength test. The results obtained from the testing showed that the incorporation of steel fiber is significantly effective to enhance the resistance towards moisture damage, while increasing the stability and reducing the abrasion loss of SMA mixture, compared to conventional mixture. Overall, it can be concluded that the addition of steel fiber in asphalt mixture specifically SMA, has improved the mechanical performance in the application of asphalt pavement with the optimum steel fiber proportion of 0.3% by the weight of mixture. The developed models between the independent variables and responses demonstrated high levels of correlation. The study found that Response Surface Methodology (RSM) is an effective statistical method for providing an appropriate empirical model for relating parameters and predicting the optimum performance of an asphaltic mixture to reduce flexible pavement failure.


2021 ◽  
Vol 879 ◽  
pp. 126-135
Author(s):  
Siti Nur Naqibah Kamarudin ◽  
Mohd Rosli Hainin ◽  
Muhammad Naqiuddin Mohd Warid ◽  
Mohd Khairul Idham Mohd Satar ◽  
Ramadhansyah Putra Jaya

Nowadays, road damage issue become the norm due to increment of traffic load and traffic volume. It shortens the service life of asphalt mixtures and increase the cost of maintenance. One way to reduce the issue is by using polymer additive in asphalt mixture. Treated Plastic is one type of polymer additive made of plastic bag (Polyethylene). The main purpose of this research is to determine the improvement of asphalt mixture’s performance incorporating Treated Plastic (TP) as additive in terms of stability, stiffness, fatigue cracking, stripping and rutting. The mechanical properties of asphalt mixes that include various percentages of TP (0%, 0.25%, 0.5%, 0.75%, 1%, 2% and 3%) were calculated and assessed with laboratory tests. 0.75% by weight of total mix of TP was found to be the optimum amount. The outcomes were analyzed by Marshall Stability and Flow, Resilient Modulus, Tensile Strength Ratio and Hamburg Wheel Tracker test. As the results shown, the addition of TP gave significant improvement to the stability and stiffness of asphalt mixture. 0.75% of TP was selected as the optimum percent content with percent improvement about 100, 73 and 25% for fatigue cracking, rutting and stripping resistance respectively. Hence, 0.75% of TP improved the resistance of rutting and stripping but susceptible to fatigue cracking.


2016 ◽  
Vol 36 (3) ◽  
pp. 29 ◽  
Author(s):  
Hugo Alexander Rondón ◽  
Manuel Santiago Ocampo ◽  
Hermes Ariel Vacca ◽  
Fredy Alberto Reyes ◽  
Juan Pablo Nieto ◽  
...  

This paper presents results stemming from a comparative experimental analysis of two warm-mix asphalts (WMA) and a dense-graded hot-mix asphalt (HMA). In order to evaluate asphalt mixture behavior, physical and rheological tests were conducted, including tests on resilient modulus, resistance to moisture-induced damage, resistance to fatigue and resistance to permanent deformation. Samples studied were subjected to short (STOA) and long-term (LTOA) aging. As far as asphalt mixture composition is concerned, the same particle size distribution and coarse aggregate were employed for both mixture types. The control HMA mixture was produced with AC 60-70, and the WMAs used the same asphalt cement modified with two chemical additives (Rediset WMX® and Cecabase RT®). The modified mixtures exhibited better resistance to permanent deformation, aging and moisture-induced damage (versus the control mixture). Likewise, WMAs generally saw increased fatigue resistance under controlled-stress loading, which rheological characterization showed is mainly attributable to binder additives and their concomitant modifications.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Nur Mustakiza Zakaria ◽  
Mohammad Kamal Hassan ◽  
Ahmad Nazrul Hakimi Ibrahim ◽  
Sri Atmaja P. Rosyidi ◽  
Nur Izzi Md. Yusoff ◽  
...  

One of the major problems with landfills is that they contain a large amount of solid wastes. Waste plastics and glasses contribute greatly to this problem, and these materials need to be managed or recycled to extend the life of landfill sites. Hence, this study was conducted to investigate the feasibility of using these waste materials in asphalt mixtures for pavement applications. Various types of recycled waste plastics and glasses were selected for this study and the mix containing these materials was designed by the Marshall method. Three types of glass were used: bottle glass, liquid-crystal display (LCD) glass, and sheet glass. In terms of the total weight of the asphalt mixtures, approximately 5% constituted of recycled materials used as an aggregate replacement. In this study, asphalt mixtures were aged in the laboratory to simulate the site conditions of short-term and long-term ageing. After the ageing process, samples were tested for asphalt mixture performance characteristics in terms of the following parameters: Marshall Stability and Flow, Marshall Quotient and resilient modulus. It was found that the replacement combining 1% recycled plastic and 4% recycled glass shows almost similar and satisfactory results compared to the control sample for all tests. Therefore, recycled plastic and recycled glass, when optimally blended, can be considered feasible to be used as an aggregate replacement in asphalt mixtures for flexible road pavements.


2014 ◽  
Vol 70 (4) ◽  
Author(s):  
Mohd Zul Hanif Mahmud ◽  
Haryati Yaacob ◽  
Ramadhansyah Putra Jaya ◽  
Norhidayah Abdul Hassan

This paper presents an investigation on the effects of flaky aggregates in asphalt mixture. In general, aggregate characteristics are critical to the performance of asphalt mixture. Therefore, flaky aggregate is normally avoided simply because it has significant contribution towards the gradation and reduces the interlocking characteristics of aggregates within asphalt mixture. In practice, it is recommended that the amount of flakiness aggregate should be limited to 25% or less. This study evaluates the mechanical properties of asphalt mixture specimens prepared with various percentages of flaky aggregates particularly 10%, 20% and 30% by the total weight of the mixture. Several laboratory tests were conducted including Marshall properties test, Indirect Tensile Modulus test and Dynamic Creep test. The results show that higher bitumen content is required with the increased in the amount of flaky aggregates added to mixture. Furthermore, greater amount of flaky aggregates tends to reduce the mixture’s resilient modulus and its resistance against permanent deformation.


2018 ◽  
Vol 65 ◽  
pp. 02002
Author(s):  
Ramadhansyah Putra Jaya ◽  
Romana Sarker Lopa ◽  
Norhidayah Abdul Hassan ◽  
Haryati Yaacob ◽  
Mohamad Idris Ali ◽  
...  

Asphaltic concrete pavement is popular worldwide, but this type of pavement requires frequent maintenance and rehabilitation as it cannot cope up with the increasing number of traffic vehicles and loads. Therefore, modifying asphalt pavement to reduce the damages and defects is necessary, thereby enhancing the serviceability of pavement. This study presents the effect of waste cooking oil on asphalt mixture at different ageing conditions. A 60/70 penetration-grade asphalt binder was used, and 5% of this binder was replaced with untreated and treated waste cooking oil. Asphalt mixtures were prepared at the selected 5% optimum bitumen content and under two tests, i.e. Marshall stability and resilient modulus. The findings showed the better stability and resilient modulus of long-term aged samples incorporated with treated waste cooking oil than the unaged and short-term aged samples. The incorporation of untreated waste cooking oil caused reduced performance compared with the controlled and long-term aged samples. This result can be attributed to the high acid value of waste cooking oil. Therefore, treated waste cooking oil can be used as a binder replacement given its significantly higher performance at the mentioned ageing condition than the controlled mixture.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nuha Salim Mashaan ◽  
Mohamed Rehan Karim

Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM)), in stone mastic asphalt (SMA 20) performance. The virgin bitumen (80/100) penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness), dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.


Porous asphalt (PA) is a type of asphalt mixture that has large air void content to increase the drainage capability of flexible pavement. However, PA suffers a few drawbacks such as less durable and less tensile strength due to large air void characteristic. Thus, this study intended to utilize cellulose fiber to increase the overall performance of PA. Cellulose fiber (CF) used were in the range of 0.2% to 0.6% by weight of PA mixture. Among the tests involve to analyze the overall performance of CF modified PA were Abrasion Loss, Marshall Stability, Resilient Modulus and Dynamic Creep. From data analysis, it shows that 0.4% CF significantly increased the abrasion resistance. Meanwhile, highest stability and resilient modulus values obtained at 0.6% CF-PA. From the results, it shows that the addition of CF can significantly enhance the overall performance of PA.


Porous asphalt is designed to have a relatively higher porosity than other pavement types, this porous property is obtained because the proportion of fine aggregate is less than other types of mixtures. In an effort to increase the strength of porous asphalt pavement structures, it is required to use other added materials both as additives, stabilizers and substitution materials. In this study, the added material used was low density polyethylene (LDPE) plastic waste as a substitute for asphalt and coconut-shell ash (CA) as filler substitution material. Stone ash, cement and fly ash are commonly used as fillers in asphalt mixture, CA is expected to be one of the alternatives. This study aims to determine the characteristics of using LDPE into asphalt pen. 60/70 and the use of 50% CA filler on the characteristics of porous asphalt mixture and to find out indications of deficiencies and strengths in the asphalt mixture. On the initial bitumen content without using substitutes, the optimum bitumen content (OAC) was 5.76% with the variation used of LDPE 3%, 5% and 7% and 50% CA as filler. At OAC value 5.76% with 3% LDPE substitution meet all required parameter. With the value of Marshall Stability, VIM, Flow, AFD, and CL are 560.50kg, 18.61%, 4.3mm, 0.22% and 19.69% respectively.


Sign in / Sign up

Export Citation Format

Share Document