Laboratory Investigation on the Effects of Flaky Aggregates on Dynamic Creep and Resilient Modulus of Asphalt Mixtures

2014 ◽  
Vol 70 (4) ◽  
Author(s):  
Mohd Zul Hanif Mahmud ◽  
Haryati Yaacob ◽  
Ramadhansyah Putra Jaya ◽  
Norhidayah Abdul Hassan

This paper presents an investigation on the effects of flaky aggregates in asphalt mixture. In general, aggregate characteristics are critical to the performance of asphalt mixture. Therefore, flaky aggregate is normally avoided simply because it has significant contribution towards the gradation and reduces the interlocking characteristics of aggregates within asphalt mixture. In practice, it is recommended that the amount of flakiness aggregate should be limited to 25% or less. This study evaluates the mechanical properties of asphalt mixture specimens prepared with various percentages of flaky aggregates particularly 10%, 20% and 30% by the total weight of the mixture. Several laboratory tests were conducted including Marshall properties test, Indirect Tensile Modulus test and Dynamic Creep test. The results show that higher bitumen content is required with the increased in the amount of flaky aggregates added to mixture. Furthermore, greater amount of flaky aggregates tends to reduce the mixture’s resilient modulus and its resistance against permanent deformation.

2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


2021 ◽  
Vol 2102 (1) ◽  
pp. 012020
Author(s):  
J G Bastidas-Martínez ◽  
J C Ruge ◽  
R A G Zuluaga ◽  
L Medina

Abstract This paper evaluated the physical-mechanical characteristics of two asphalt mixtures. One mix with conventional asphalt and the other with asphalt modified with recycled rubber grain. For this purpose, the asphalt mix designs were made by means of the Marshall methodology. Subsequently, asphalt mixtures were manufactured to analyze the action of monotonic loads (indirect tensile strength) and dynamic loads (resilient modulus). Previously, each type of asphalt mix was subjected to short- and long-term aging conditions, following Aastho guidelines. It is concluded that the incorporation of recycled rubber grain makes the changes in mechanical properties with aging not very noticeable in relation to mixtures without this material.


Author(s):  
Taesoon Park ◽  
Brian J. Coree ◽  
C. W. Lovell

The viability of using pyrolized carbon black (CBp) derived from waste tires as a reinforcing agent in asphalt mixtures was evaluated. Commercial carbon black (CB) has been previously shown to reduce the rutting resistance, temperature susceptibility, and cracking propagation potential of asphalt concrete. It was believed that CBp could produce similar benefits; this belief has been confirmed by this study. Different ratios of CBp and CB (5, 10, 15, and 20 percent by weight of asphalt) were blended with two grades of asphalt (AC-10 and AC-20). The Marshall method, the gyratory testing machine, the dynamic creep testing (confined), the indirect tensile testing, and the resilient modulus test were performed. The test results of CBp mixtures were compared with results of CB and conventional mixtures. The analyses of test results show that the typical performance of CBp-modified asphalt mixtures is improved with respect to commercial CB and conventional mixtures. The rutting potential and the temperature susceptibility can be reduced by the inclusion of CBp in the asphalt mixture. A CBp content of 10 to 15 percent by weight of asphalt is recommended for improvement of asphalt concrete.


2016 ◽  
Vol 16 ◽  
pp. 69-81 ◽  
Author(s):  
Muhammad Karami ◽  
Ainalem Nega ◽  
Ahdyeh Mosadegh ◽  
Hamid Nikraz

The main objective this study is to evaluate the permanent deformation of buton rock asphalt (BRA) modified asphalt paving mixtures using dynamic creep test so that long term deformation behavior of asphalt mixtures can be characterized. The dynamic creep test was conducted on unmodified and BRA modified asphalt mixture using UTM25 machine. Asphalt cement of C170 from a regional supplier in Western Australia was used as the base asphalt binder for unmodified asphalt mixture; and BRA modified asphalt mixtures were made by substituting the base asphalt with 10, 20, and 30% (by weight of total asphalt binder) natural binder continuing granular BRA modified binder. The granular (pellets) BRA modified binder with a diameter of 7-10 mm was produced and extracted according the Australia Standard. Crushed granite was taken from a local quarry of the region; and dense graded for both unmodified and BRA modified asphalt mixture with the nominal size of 10 mm was used. The results of this analysis showed that BRA modified had a good performance as compared with unmodified asphalt mixtures, and increase in the content modified binder to 10%, 20%, and 30% resulted in decrease of the total permanent strain.


2019 ◽  
Vol 5 (2) ◽  
pp. 320
Author(s):  
Gholam Hossein Hamedi

Several parameters affect asphalt mix performance against loading and environmental conditions. Minor changes in the filler amount or type can cause obvious changes in the asphalt mixture properties. Accordingly, in this research attempts have been made to optimally make asphalt mixture strong against loading and environmental conditions by changing the type, size and percentage of filler used in asphalt mixture. In this line, the effect of two types of cement and nano-silica fillers in two different percentages was investigated and compared as an alternative for part of the main filler in asphalt mixture samples made by two types of limestone and granite aggregate. Cement filler by 2% and 4% of the aggregate mass as the alternative for part of the main filler is added to stone materials before mixing with binder, but nano-silica filler by 2% and4 % of weight of the binder as the alternative for part of the main filler is added to binder and a modified and homogeneous binder is produced using a high speed mixer. In the following, considering the optimum binder content for each mixture, resilient modulus tests were conducted to determine the strength performance against loading and indirect tensile strength ratio was used to determine moisture sensitivity of asphalt mixtures. Results obtained from resilient modulus tests show that the use of nano-silica and cement has been capable of favorably improving the resilient modulus of samples containing these two types of fillers. The improvement of the resilient modulus of samples containing nano-silica is very significant. Additionally, the studies conducted based on the indirect tensile strength ratio show that both types of alternative fillers, especially cement has been capable of desirably improve the strength of asphalt mixtures against moisture damage.


Author(s):  
Kunnawee Kanitpong ◽  
Hussain Bahia

Antistripping additives and polymer modifications are two common modifiers used to improve the fundamental properties of asphalt binders as those properties relate to the performance of asphalt mixtures. Adhesion and cohesion are two important related properties of asphalt binders that can affect asphalt mixture performance before and after water conditioning. The purpose of this study was to quantify the effects of antistripping additives and polymers on the adhesion and cohesion of binders and to relate these effects to the performance of mixtures as measured in the laboratory before and after water conditioning. The performance tests of asphalt mixtures included indirect tensile strength, uniaxial compression permanent deformation, and Hamburg wheel tracking. Asphalt mixtures were produced with different modified binders and with two aggregate types. The binders were modified with antistripping additives and polymers and by chemical treatment and oxidization methods. Granite and limestone were selected as two types of aggregate sources. The results indicate that the performance of asphalt mixtures is highly dependent on modification techniques and water conditioning. The overall performance of polymer-modified mixtures is more desirable than those of unmodified mixtures and of mixtures modified with antistripping additives. Polymers are found to improve rutting performance, adhesion, and cohesion of an asphalt binder. In contrast, the antistripping additive can improve only the adhesion without changing other properties. The results of this study also illustrate that the adhesion and cohesion of an asphalt binder are good indicators of the performance of asphalt mixtures in the laboratory when they are conditioned with water.


Improvement in transportation system is never been as easy as just providing links for better connection and network but more to do with the pavement quality of the road itself. Modification with agriculture waste is just another approach to enhance the performance of asphaltic concrete. In this study, a non-traditional bitumen modifier from a coconut shell which is the charcoal coconut shell ash (CCSA) was used. Addition of CCSA in bitumen with 0%, 2%, 4%, 6%, and 8% by weight of bitumen were investigated along with the laboratory stimulation of aging was applied in this study. Properties of modified asphalt mixture were determined using resilient modulus, dynamic creep and Marshall Stability test.. Results of samples with CCSA which underwent aging show some improvement in terms of the stability and permanent deformation characteristics. Resilient modulus, dynamic creep and Marshall Stability tests recorded the highest rates when compared to controlled sample. Hence, for more durable asphalt concrete and high serviceability it is recommended to use 2% to 4% of CCSA.


Author(s):  
Ahmed Muftah ◽  
Amir Bahadori ◽  
Fouad Bayomy ◽  
Emad Kassem

This paper presents the findings of a research study to determine the benefits of fiber-reinforced asphalt mixtures used to mitigate distresses observed in the field. Control asphalt mixture test sections were constructed on US-30 in Idaho, along with fiber-reinforced asphalt mixture test sections. Three types of fibers were evaluated: Fiber 1 (i.e., aramid and polyolefin fiber), Fiber 2 (i.e., wax-treated aramid fiber), and Fiber 3 (i.e., glass fiber). Several laboratory tests were conducted on laboratory-prepared test samples and extracted field cores. The laboratory tests included dynamic modulus, flow number, Hamburg wheel-track test, indirect tensile test, creep compliance, and semicircular bending, in addition to performance evaluation with AASHTOWare Pavement ME Design software. The laboratory results showed no significant improvement to the properties of asphalt mixtures at the fiber content recommended by the manufacturer. However, the performance of asphalt mixtures did improve at a fiber dosage higher than the one recommended by the manufacturer. This study demonstrated the need to evaluate different fiber contents when asphalt mixtures are designed, because the dosage recommended by the manufacturer may not be optimal for various asphalt mixtures.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nuha Salim Mashaan ◽  
Mohamed Rehan Karim

Today, rapid economic and industrial growth generates increasing amounts of waste materials such as waste tyre rubber. Attempts to inspire a green technology which is more environmentally friendly that can produce economic value are a major consideration in the utilization of waste materials. The aim of this study is to evaluate the effect of waste tyre rubber (crumb rubber modifier (CRM)), in stone mastic asphalt (SMA 20) performance. The virgin bitumen (80/100) penetration grade was used, modified with crumb rubber at four different modification levels, namely, 6%, 12%, 16%, and 20% by weight of the bitumen. The testing undertaken on the asphalt mix comprises the indirect tensile (dynamic stiffness), dynamic creep, and wheel tracking tests. By the experimentation, the appropriate amount of CRM was found to be 16% by weight of bitumen. The results show that the addition of CRM into the mixture has an obvious significant effect on the performance properties of SMA which could improve the mixture's resistance against permanent deformation. Further, higher correlation coefficient was obtained between the rut depth and permanent strain as compared to resilient modulus; thus dynamic creep test might be a more reliable test in evaluating the rut resistance of asphalt mixture.


2020 ◽  
Vol 6 (2) ◽  
pp. 304-317 ◽  
Author(s):  
Huda Qasim Mawat ◽  
Mohammed Qadir Ismael

Moisture induced damage in asphaltic pavement might be considered as a serious defect that contributed to growth other distresses such as permanent deformation and fatigue cracking. This paper work aimed through an experimental effort to assess the behaviour of asphaltic mixtures that fabricated by incorporating several dosages of carbon fiber in regard to the resistance potential of harmful effect of moisture in pavement. Laboratory tests were performed on specimens containing fiber with different lengths and contents. These tests are: Marshall Test, the indirect tensile test and the index of retained strength. The optimum asphalt contents were determined based on the Marshall method. The preparation of asphaltic mixtures involved three contents of carbon fiber namely (0.10%, 0.20%, and 0.30%) by weight of asphalt mixture and three lengths including (1.0, 2.0 and 3.0) cm. The results of this work lead to several conclusions that mainly refer to the benefits of the contribution of carbon fibers to improving the performance of asphalt mixtures, such as an increase in its stability and a decrease in the flow value as well as an increase in voids in the mixture. The addition of 2.0 cm length carbon fibers with 0.30 percent increased indirect tensile strength ratio by 11.23 percent and the index of retained strength by 12.52 percent. It is also found that 0.30 % by weight of the mixture is the optimum fiber content for the three lengths.


Sign in / Sign up

Export Citation Format

Share Document