scholarly journals Development of Modified Recycled Aggregate for the Production of Sustainable Concrete

2019 ◽  
Vol 8 (3) ◽  
pp. 8614-8618

This paper deals with the treatment methods of recycled aggregate (RA) for its high water absorption which is due to the old mortar and micro-cracks on the surface of the recycled aggregate. Geopolymer paste which is made using class C & F fly ash are used for coating the recycled aggregate in order to reduce the water absorption (WA). The parameters which influence the coating of RA are fly ash content, molarity of alkaline solution, Liquid alkaline to ash ratio (LA/ash). The effect of each parameter on coating RA are analysed using Response surface methodology. It is observed that all the parameters has influenced the water absorption property of RA. LA/ash ratio depends on the molarity of the alkaline solution in reducing the WA of recycled aggregate. Coating of recycled aggregate with class C fly ash performed better than class F and uncoated recycled aggregate concrete. The optimal content of fly ash content, LA/ash ratio and molarity of solution are arrived using the statistical analysis are 4%, 0.35 and 9M respectively

2014 ◽  
Vol 629-630 ◽  
pp. 314-320
Author(s):  
Gai Fei Peng ◽  
Jiu Feng Zhang

This paper presents an experimental research on the influence of defects of recycled coarse aggregate on mechanical properties of recycled aggregate concrete (RAC). Concretes at two water/binder ratios (0.255 and 0.586) were broken into recycled aggregate (RA). A type of thermal treatment, i.e. heating to target temperature 620 °C, which was maintained for 3 hr, was employed to remove mortar from gravel in RA. Tests were conducted on RA and natural aggregate to measure their water absorption and crushing values, and on RAC and natural aggregate concrete (NAC) to measure compressive strength, tensile splitting strength, and fracture energy. The experimental results revealed that both gravel damage and mortar attached can significantly influence the water absorption and crushing value of RA, as well as strength and fracture energy of RAC. The mechanical properties RAC were obviously lower than those of NAC at an identical mix proportion. Moreover the removal of mortar caused additional change in mechanical properties of RA, which might be a decrease in mechanical properties in the case of low water/binder ratio, but might be an increase in mechanical properties in the case of high water/binder ratio. As to RAC at a low water/binder ratio, gravel damage was a main factor governing the decrease in fracture energy, which means a decrease in cracking resistance of hardened RAC, whereas the mortar attached had only a slight influence on fracture energy. However, as to RAC at a high water/binder ratio, mortar attached could significantly cause a greater decrease in cracking resistance of RAC than that caused by gravel damage.


Recycled aggregate is known to have higher water absorption produced due to the porosity of the cement paste adhered to the old concrete in the recycled aggregate, this in turn affects the durability. This study attempts to investigate the surface water absorption properties of recycled concrete when fly ash is added to concrete mix. In the mix proportion considered for study, 25% of natural coarse aggregate is replaced by recycled aggregate and 30 % Cement is replaced by fly ash. Surface water absorption property is studied experimentally by Initial Surface Absorption Test. Results indicate that pozzolanic properties of fly ash helps in reducing the water permeability of recycled concrete to a great extent.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qi Gao ◽  
Zhiming Ma ◽  
Jianzhuang Xiao ◽  
Fuan Li

Capillary water absorption of concrete is closely related to its pore structure, permeability, and durability. This paper intensively investigates the effects of imposed damage, including freeze-thaw damage and loading damage, on the capillary water absorption of recycled aggregate concrete (RAC). Freeze-thaw cycle test, loading test, and the experiment of capillary water absorption were carried out, respectively. The results demonstrate that the addition of recycled coarse aggregate (RCA) results in the increase in the capillary absorption behavior of RAC without imposed damage, and there exists a linear correlation between the behaviors of capillary water absorption and chloride penetration of RAC. The imposed freeze-thaw damage or load damage of RAC boosts with the increase of RCA replacement percentages after suffering the same freeze-thaw cycles or loading level. The imposed freeze-thaw damage and load damage further lead to the increase in the capillary water absorption of RAC, and the capillary absorption coefficient of RAC increases linearly with the increased RCA replacement percentages, after suffering the same freeze-thaw cycles or loading level. Furthermore, capillary absorption coefficient increases linearly with the growth of imposed freeze-thaw damage or load damage degree, which can be used to estimate the capillary absorption behavior of RAC exposed to the extreme environment.


2019 ◽  
Vol 6 (12) ◽  
pp. 190813
Author(s):  
Bin Lei ◽  
Huajian Liu ◽  
Zhimin Yao ◽  
Zhuo Tang

At present, many modification methods have been proposed to improve the performance of recycled aggregate concrete (RAC). In this study, tests on the compressive strength and damping properties of modified RAC with the addition of different proportions of recycled coarse aggregate (RCA) (0, 50, 100%), rubber powder (10, 15, 20%), steel fibre (5, 7.5, 10%) and fly ash (15, 20, 5%) are carried out. To elucidate the effect of the modification method on the interfacial transition zone (ITZ) performance of RAC, model ITZ specimens are used for push-out tests. The results show that when the replacement rate of RCA reaches 100%, the loss factor of the RAC is 6.0% higher than that of natural aggregate concrete; however, the compressive strength of the RAC decreases by 22.6%. With the addition of 20% rubber powder, the damping capacity of the modified RAC increases by 213.7%, while the compressive strength of the modified RAC decreases by 47.5%. However, with the addition of steel fibre and fly ash, both the compressive strength and loss factor of the RAC specimens increase. With a steel fibre content of 10 wt%, the compressive strength and loss factor of the RAC increase by 21.9% and 15.2%, respectively. With a fly ash content of 25 wt%, the compressive strength and loss factor of the RAC increase by 8.6% and 6.9%, respectively. This demonstrates that steel fibre and fly ash are effective in improving both the damping properties and compressive strength of RAC, and steel fibre is more effective than fly ash. Two methods were used for modification of the RAC: reinforcing the RCA through impregnation with a 0.5% polyvinyl alcohol (PVA) emulsion and nano-SiO 2 solution, and strengthening the RAC integrally through the addition of fly ash as an admixture. Both of these techniques can improve the ITZ bond strength between the RAC and new mortar. Replacing 10% of the cement with fly ash in the new mortar is shown to be the best method to improve the ITZ strength.


Author(s):  
Akarsh Verma ◽  
Kamal Joshi ◽  
Amit Gaur ◽  
V. K. Singh

In this article, bio-composites derived from starch-glycerol biodegradable matrix reinforced with jute fibers have been fabricated using the wet hand lay-up and compression moulding techniques. Samples having different weight percentages of jute fiber in the starch matrix have been analysed. The fibers surface was chemically treated by alkaline sodium hydroxide for improving the interphase bonding between fiber and matrix. Tensile test for the composites were done and the sample with highest tensile strength was selected for further tests that included water absorption, scanning electron microscopy and thermal analysis. It has been concluded that the ultimate tensile strength was found to be maximum for the composition of 15% fiber by weight composite as 7.547 MPa without epoxy coating and 10.43 MPa with epoxy coating. The major disadvantage of bio-composite is its high water absorption property, which in this study has been inhibited by the epoxy resin layer. Herein, the results of various tests done disclose a noteworthy improvement in the overall properties of bio-composite, in comparison to the neat biodegradable starch matrix.


2016 ◽  
Vol 7 (5) ◽  
pp. 546-550
Author(s):  
Aurelijus Daugėla ◽  
Džigita Nagrockienė ◽  
Laurynas Zarauskas

Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1247 ◽  
Author(s):  
Jianhe Xie ◽  
Jianbai Zhao ◽  
Junjie Wang ◽  
Chonghao Wang ◽  
Peiyan Huang ◽  
...  

There is a constant drive for the development of ultra-high-performance concrete using modern green engineering technologies. These concretes have to exhibit enhanced durability and incorporate energy-saving and environment-friendly functions. The object of this work was to develop a green concrete with an improved sulfate resistance. In this new type of concrete, recycled aggregates from construction and demolition (C&D) waste were used as coarse aggregates, and granulated blast furnace slag (GGBS) and fly ash-based geopolymer were used to totally replace the cement in concrete. This study focused on the sulfate resistance of this geopolymer recycled aggregate concrete (GRAC). A series of measurements including compression, X-ray diffraction (XRD), and scanning electron microscopy (SEM) tests were conducted to investigate the physical properties and hydration mechanisms of the GRAC after different exposure cycles in a sulfate environment. The results indicate that the GRAC with a higher content of GGBS had a lower mass loss and a higher residual compressive strength after the sulfate exposure. The proposed GRACs, showing an excellent sulfate resistance, can be used in construction projects in sulfate environments and hence can reduce the need for cement as well as the disposal of C&D wastes.


Sign in / Sign up

Export Citation Format

Share Document