scholarly journals Simulation of lead Antimony Alloy Solidification and its Experimental Validation

The solidification of metals continues to be a phenomenon of great interest to physicists, metallurgists, casting engineers, and software developers. It is a non-linear transient phenomenon, posing a challenge in terms of modeling and analysis. During the solidification of a casting in a mould, the heat-transfer between the casting and the mould plays a vital role. This paper attempts to study heat flow within the casting, as well as from the casting to the mould, and finally obtains the temperature history of some points inside the casting. The most important instant of time is when the hottest region inside the casting is solidifying. ProCAST software has been used to obtain the temperature distribution in the casting process by performing Transient Thermal Analysis. In this research work, solidification of lead-2wt%antimony alloy has been carried out in the different sizes of metallic mold to predict the formation of shrinkage during solidification. Theoretical results have been validated experimentally for a particular case of lead-2wt%antimony alloy solidification. Results obtained by simulation software are compared with the experimental reading of temperature and found to be in good agreement. Voids appeared at the top and isolated area of castings for the defect-free direct method used in this study.

2011 ◽  
Vol 66-68 ◽  
pp. 1384-1389
Author(s):  
A. Abdullah ◽  
Shamsuddin Sulaiman ◽  
B.T. Hang Tuah Baharudin ◽  
M.K.A.M. Arifin ◽  
T.R. Vijayaram

Tailing sand is one of the residue minerals obtained after tin extraction. It contains silica in between 94% and 99.5% and available in abundance at the Kinta Valley, Perak State, Malaysia. Permeability is one of the important molding sand properties and considered much in the sand casting mold preparation. This molding sand property plays a vital role in the sand casting process and helps to remove the gases during the casting processing. In this research work, samples of tailing sands were gathered from four identified ex tin mines located at the Perak State, Malaysia. They were investigated by the standard sand testing procedures prescribed by the American Foundrymen Society (AFS). Sand specimens of size Ø50 mm×50 mm in height from various sand–water ratios bonded with 4% and 8% clay were compacted on applying three ramming blows of 6666 g each by using a Ridsdale-Dietert metric standard rammer. The specimens were tested for permeability number with the aid of a Ridsdale-Dietert permeability meter. Before the tests were conducted, the moisture content was measured by using a moisture analyzer. The results were compared with the properties of the molding sand samples collected from RCS Manufacturing Sdn. Bhd., the company supplying sand to the Proton Casting unit car manufacturing company. The molding sand sample sample bonded with 8% clay was found to have maximum permeability with an optimum allowable moisture content range of 3.5-6.0% and for the sand mixture bonded with 4% clay at 3.0-3.5% moisture.


2013 ◽  
Vol 465-466 ◽  
pp. 657-661 ◽  
Author(s):  
B. E. Narkhede ◽  
C.M. Choudhari ◽  
S.K. Mahajan

Solidification of metals continues to be a phenomenon of great interest to physicists, metallurgists, casting engineers and software developers. It is a non-linear transient phenomenon, posing a challenge in terms of modelling and analysis. This paper attempts to study heat flow within the casting, as well as from the casting to the mould, and finally obtains the temperature history of all points inside the casting. The most important instant of time is when the hottest region inside the casting is solidifying. ANSYS software has been used to obtain the last solidifying region in the casting process by performing transient thermal analysis. Location of the hot spot predicted by software simulation showed good agreement with the experimental trial. It was also observed that the simulation of casting helps in obtaining optimum design of riser.


1987 ◽  
Vol 26 (04) ◽  
pp. 189-194
Author(s):  
S. S. El-Gamal

SummaryModern information technology offers new opportunities for the storage and manipulation of hospital information. A computer-based hospital information system, dedicated to urology and nephrology, was designed and developed in our center. It involves in principle the employment of a program that allows the analysis of non-restricted, non-codified texts for the retrieval and processing of clinical data and its operation by non-computer-specialized hospital staff.This Hospital Information System now plays a vital role in the efficient provision of a good quality service and is used in daily routine and research work in this hospital. This paper describes this specialized Hospital Information System.


2012 ◽  
Vol 3 (2) ◽  
pp. 253-255
Author(s):  
Raman Brar

Image segmentation plays a vital role in several medical imaging programs by assisting the delineation of physiological structures along with other parts. The objective of this research work is to segmentize human lung MRI (Medical resonance Imaging) images for early detection of cancer.Watershed Transform Technique is implemented as the Segmentation method in this work. Some comparative experiments using both directly applied watershed algorithm and after marking foreground and computed background segmentation methods show the improved lung segmentation accuracy in some image cases.


2021 ◽  
Vol 5 (2) ◽  
pp. 63
Author(s):  
Niraj Kumbhare ◽  
Reza Moheimani ◽  
Hamid Dalir

Identifying residual stresses and the distortions in composite structures during the curing process plays a vital role in coming up with necessary compensations in the dimensions of mold or prototypes and having precise and optimized parts for the manufacturing and assembly of composite structures. This paper presents an investigation into process-induced shape deformations in composite parts and structures, as well as a comparison of the analysis results to finalize design parameters with a minimum of deformation. A Latin hypercube sampling (LHS) method was used to generate the required random points of the input variables. These variables were then executed with the Ansys Composite Cure Simulation (ACCS) tool, which is an advanced tool used to find stress and distortion values using a three-step analysis, including Ansys Composite PrepPost, transient thermal analysis, and static structural analysis. The deformation results were further utilized to find an optimum design to manufacture a complex composite structure with the compensated dimensions. The simulation results of the ACCS tool are expected to be used by common optimization techniques to finalize a prototype design so that it can reduce common manufacturing errors like warpage, spring-in, and distortion.


Author(s):  
Ike Sowden ◽  
George Currier

Casting integrity is essential for providing components that meet design criteria for strength and fatigue performance. As the leading method of manufacturing metal components in the rail industry, maintaining quality and consistency is a continuing struggle for car owners and builders. Internal shrinkage and voids due to insufficient metal flow are issues commonly found in casting molds which are not designed or utilized properly. Using casting simulation software, potential issues can be discovered upfront and robust mold designs can be created that offer a tolerance for the variance or variations in casting conditions that are present in the real world. Strato, Inc. has extensively studied the effectiveness of these simulations in foundries through advanced inspection techniques. It is evident that casting simulations can not only locate, but also explain shrinkage cavities and voids through material density plots and inspection of directional solidification via critical fraction solid time plots. This approach is markedly more efficient than the traditional trial and error method, where mold makers rely on experience and destructive testing to develop acceptable mold designs. With recent advances in simulation software, the labor and time-intensive ways of the past have been supplanted by a more scientific approach to the problem. Understanding the fluid dynamics and thermodynamics of the casting process provides a means of creating a stable, repeatable final product. This higher quality final product can be delivered faster to the customer and at a far less expense by identifying problem areas prior to the tooling and sampling processes. Case-studies explored by the Strato engineering team suggest that using this software decreases the fallout rate.


Author(s):  
Meng Ning ◽  
Zhi Wu ◽  
Lianjie Chen ◽  
Fan Zhang ◽  
Huitao Chen

Research and design an intelligent bed and chair integration system for assisting inconvenient mobility and aging population. The system consists of a removable detached wheelchair and a c-shaped bed with a fixed structure. The user can switch freely between the mobile wheelchair and the bed to meet the user's requirements of free movement and repositioning.Through the simulation software to analyze the movement characteristics of the bed backboard, the angle of the take-off and landing of the backboard and the sudden change of the take-off and abrupt angular velocity will cause the user to have dizziness and discomfort. In the case of determining the speed of the driving push rod, the relationship between mechanism parameters and installation parameters is the key to affect the lifting rate of the rear plate. Modeling and analysis of each mechanism is performed to determine the relationship between the mechanism parameters and the take-off and landing speed of the backplane. After optimizing the mechanism, the simulation is compared again to obtain the optimal solution. Finally, the optimal solution parameter is the final solution to improve the overall comfort of the nursing bed.


Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
A. Chamkha

Purpose This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000. Design/methodology/approach The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work. Findings Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel. Originality/value This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes


2014 ◽  
Vol 571-572 ◽  
pp. 1091-1096
Author(s):  
Guang Sheng Zhang ◽  
Fei Zhang

There are many advantages in producing forklift box through the LFC. However, we found shrinkage porosity defects in the interior of castings through simulating the original process by ProCAST casting simulation software. Therefore, we analyzed the defects and improved the technology program. firstly, increased riser in position of shrinkage, Secondly, changed the filling’s way, lastly, selected the best temperature and vacuum by the orthogonal experiment and determined the best technology solution. we found the shrinkage porosity defects have been removed by the improved process. We found the production consistent with the simulation results through verification. Therefore we verify the accuracy of the ProCAST.


2015 ◽  
Vol 12 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Adik Yadao ◽  
R. S. Hingole

Today’s car is one of the most important things in everyone’s life .Every person wants to have his or her own car but the question that arises in each buyer’s mind is whether the vehicle is safe enough to spend so much of money so it is the responsibility of an mechanical engineer to make the vehical comfortable and at the Same time safer. Now a days automakers are coming with various energy absorbing devices such as crush box, door beams etc. this energy absorbing device s prove to be very useful in reducing the amount force that is being transmitted to the occupant. In this we are using impact energy absorber in efficient manner as compare to earlier. The various steps involved in this project starting from developing the cad model of this inner impact energy absorber using the CAD software CATIA V5 R19. Then pre-processing is carried out in HYPERMESH 11.0 which includes assigning material, properties, boundary conditions such as contacts, constraints etc. LS-DYNA971 is used as a solver and LS-POST is used for the post processing and results obtained are compared to the standards. By carrying out this idea it has been observed that there is a considerable amount of energy that is being absorbed by this energy-absorbing device. Along with this energy absorption, the intrusion in passenger compartment is also reduced by considerable amount. So for safer and comfortable car with inner impact energy absorber is one of the best options available. This will get implement by this research work.


Sign in / Sign up

Export Citation Format

Share Document