scholarly journals Mechanical Properties of Benzoylation Treated Sugar Palm Fiber and Its Composite

2020 ◽  
Vol 8 (6) ◽  
pp. 4248-4252

Studies on the effect of treated sugar palm fiber with alkaline treatment and benzoylation treatment on single fiber tensile strength and interfacial shear strength (IFSS) are shown in this paper. Also shown is the tensile strength of treated sugar palm fiber composite with variable fiber loading (10%, 20% and 30%). For alkaline treatment sodium hydroxide (NaOH) was used, while benzoyl chloride (C7H5ClO) was used in benzoylation treatment. Polymer matrix that was used in the process of making sugar palm fiber composite is epoxy resin with hardener. For the single fiber test and IFSS, the alkaline treatment was carried out using 1% concentration of sodium hydroxide for one hour soaking time while 5ml of benzoyl chloride was used to agitate with sodium hydroxide for benzoylation treatment with variable soaking time (10, 20 and 30 minutes). Treated sugar palm fiber showed higher single fiber strength and IFSS compared to untreated fiber due to the efficiency of both treatments which help rearrangement of fibrils along the tensile force direction. Tensile properties of sugar palm fiber composite show improvement in tensile stress and tensile modulus for treated sugar palm fiber composite while tensile strain show the opposite result. This is because the bonding strength between fiber and matrix increased by removing the outer layer together with impurities from the fiber during chemical treatment. Thus, with this treatment method, sugar palm fiber can be use as reinforcement material for composite and use them for commercial use such as for furniture and component inside vehicle.

2017 ◽  
Author(s):  
Kuncoro Diharjo ◽  
Andy Permana ◽  
Robbi Arsada ◽  
Gundhi Asmoro ◽  
Herru Santosa Budiono ◽  
...  

2021 ◽  
pp. 004051752110086
Author(s):  
MJ Suriani ◽  
SM Sapuan ◽  
CM Ruzaidi ◽  
DS Nair ◽  
RA Ilyas

This paper aims to study the surface morphology, flammability and tensile properties of sugar palm fiber (SPF) hybrid with polyester (PET) yarn-reinforced epoxy composite with the addition of magnesium hydroxide (Mg(OH)2) as a flame retardant. The composites were prepared by hybridized epoxy and Mg(OH)2/PET with different amounts of SPF contents (0%, 20%, 35% and 50%) using the cold press method. Then these composites were tested by horizontal burning analysis, tensile strength testing and scanning electron microscopy (SEM) analysis. The specimen with 35% SPF (Epoxy/PET/SPF-35) with the incorporation of Mg(OH)2 as a flame retardant showed the lowest burning rate of 13.25 mm/min. The flame took a longer time to propagate along with the Epoxy/PET/SPF-35 specimen and at the same time producing char. Epoxy/PET/SPF-35 also had the highest tensile strength of 9.69 MPa. Tensile properties of the SPF hybrid with PET yarn (SPF/PET)-reinforced epoxy composite was decreased at 50% SPF content due to the lack of interfacial bonding between the fibers and matrix. Surface morphology analysis through SEM showed uniform distribution of the SPF and matrix with less adhesion, which increased the flammability and reduced the tensile properties of the hybrid polymeric composites. These composites have potential to be utilized in various applications, such as automotive components, building materials and in the aerospace industry.


2021 ◽  
Vol 12 (5) ◽  
pp. 6148-6163

Oil palm empty fruit bunch (OPEFB) single fibers and reinforced composites were comprehensively characterized through tensile tests to assess their performance as potential reinforcing materials in polymer composites. The performances of OPEFB single fibers and reinforced composites with untreated and treated fibers conditions were compared. The fibers were variously treated with 3% sodium hydroxide, 2% silane, 3% sodium hydroxide mixed with 2% silane, and 3% sodium hydroxide prior to 2% silane for 2 hours soaking time. The highest toughness of the single fibers test was then selected to proceed with composites fabrication. The OPEFB composites were fabricated in 90:10, 80:20, 70:30, and 60:40 epoxy-fibre fractions. The result shows that the selected treated fiber composite exhibits better performance. The selected treated fiber composite increased the highest ultimate tensile strength by 145.3% for the 90:10 fraction. The highest Young’s Modulus was increased by about 166.7% for 70:30 fraction. Next, the highest toughness was increased by 389.5% for the 30:70 fraction. The treated fibers provided a better interlocking mechanism between the matrix and fibers in reinforced composites, thus improving their interfacial bonding.


2021 ◽  
Vol 7 (1) ◽  
pp. 085-090
Author(s):  
Sujita Darmo Darmo ◽  
Rudy Sutanto Sutanto

Fibrous composite materials continue to be researched and developed with the long-term goal of becoming an alternative to metal substitutes. Due to the nature of the fiber reinforced composite material, its high tensile strength, and low density compared to metal. In general, the composition of the composite consists of reinforcing fibers and a matrix as the binding material. The potential of natural fibers as a reinforcing composite material is still being developed and investigated. The research that has been done aims to determine the characteristics of the tensile strength of the composite strengthened with Hibiscus tiliaceust bark powder (HTBP) with alkaline NaOH and KOH treatment. The reinforcing material used is HTBP and the matrix is polyester resin, with volume fraction of 5%, 10% and 20% with an alkaline treatment of 5% NaOH and 5% KOH with immersion for 2 hours, 4 hours, 6 hours and 8 hours. Tensile testing specimens and procedures refer to ASTM D3039 standard. The results of this study showed the highest tensile strength of 34.96 MPa in the alkaline treatment of 5% KOH, soaking time of 8 hours with a volume fraction of 10% and the lowest tensile strength of 21.96 MPa of 5% KOH alkaline treatment, soaking time of 6 hours with a volume fraction of 20%. .with 10% volume fraction of 34.96 MPa and the lowest tensile strength was 5% KOH alkaline treatment at 6 hours immersion with 20% volume fraction.


2014 ◽  
Vol 699 ◽  
pp. 146-150 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Muhammad Hilmi Ruzaini bin Hashim ◽  
Md Radzai bin Said ◽  
Ahmad Rivai ◽  
Mohd Ahadlin bin Daud ◽  
...  

Concern for the environment, both in terms of limiting the use of finite resources and the need to manage waste disposal, has led to increasing pressure to recycle materials at the end of their useful life. This work describes the effects of reprocessing on the mechanical properties of oil palm fiber reinforced polypropylene composites (PFC). Composites, containing 30wt% fiber with 3wt% Maleate Polypropylene as a coupling agent, were reprocessed up to six times. For this composite, tensile strength (TS) and Young modulus (YM) were found to decrease by 9.6% and 4.7% after being reprocessed for six times. Flexural strength was found to decrease by 23.8% with increased number of reprocessing. The hardness numbers of the composite were found to increase by 7.43% from 72.10 to 77.89 after the sixth reprocessing. In general the degradation on the mechanical properties is considered to be small and PFC has potential to be reprocessed.


2011 ◽  
Vol 121-126 ◽  
pp. 3039-3043
Author(s):  
Guo Liang Liu ◽  
Zheng Fan Li ◽  
Ruo Yao Ding ◽  
Xiao Min Zhong ◽  
Chong Wen Yu

The application of urea peroxide in ramie oxidation degumming was discussed in this paper. And urea peroxide impact on the effect of ramie degumming was analyzed. The experimental results show that four parameters such as time, temperature, the amount of urea peroxide and the dosage of sodium hydroxide have influence on the fiber strength. At the same time, fiber strength with the increase of the amount of urea peroxide is reduced. The fiber strength and the dosage of urea peroxide basically appear linear characteristics. With the increase of time and the amount of sodium hydroxide, the single fiber strength of ramie increases firstly and then decreases. When the temperature is 95°C and the time is 3 hours, the fiber strength is the highest.


2010 ◽  
Vol 105-106 ◽  
pp. 115-118 ◽  
Author(s):  
Qi Hong Wei ◽  
Chong Hai Wang ◽  
Zhi Qiang Cheng ◽  
Ling Li ◽  
Hong Sheng Wang ◽  
...  

In this paper, XRD was engaged in studying phase transformation of quartz fibers, SEM was engaged in studying the surface micromorphology of quartz fibers heat treated at different temperatures, and the tensile strength was measured by a single fiber strength electronics instrument. The results indicate that surface infiltration agent have been iliminated after heat treatment at 500°C, and the tensile strength decreaced significantly. The higher the temperature was, the more the tensile strength decreaced. There were no significant phase transformation and no crystallization heat treatmented at 500~800°C. But there were some round and strip bulges, and scap defects on the surface. With temperature increasing,some scab defects and bulges began to flake off, and some new rifts and cracks were formed. This was one of the important factors that decreaced tensile strength markedly.


2017 ◽  
Author(s):  
Kuncoro Diharjo ◽  
Sahid Bayu Setiajit ◽  
Setyo Rojikin ◽  
Hammar Ilham Akbar ◽  
Ilham Taufik Maulana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document