scholarly journals African lakes Nios and Mone — indicators of unique carbon element-deep respiration of the Earth

Author(s):  
Mykola Shatalov

As a result of the analysis of space, geological and tectonic information, it was established that the true causes of natural ecolymnological disasters in Cameroon in 1984 and 1986 were modern fault-block tectonic movements, which are closely associated with seismic and geodynamics in one of the sections of the “living” Adamawa Mountains. The main cause of catastrophes must be considered the activation of endogenous processes occurring in the mantle and the tectonosphere of the Earth. Cosmo- and rotogenesis of the planet Earth, in the near-surface parts of the Earth’s crust of the Adamava mountain segment, led to intensive mountain-building and heat exchange processes, the causes and mechanism of which are closely associated with the rise of abnormally hot magmatic material and gas-liquid fluids containing CO2 from the mantle. Favorable transport routes for heat and mass transfer in the Earth’s lithosphere are volcanic channels, as well as the orthogonal and diagonal network of deep faults. At the same time, volcanic channels should be considered as unique drain pipes of our planet. The lethal carbon dioxide ejected from the depths of Lakes Nyos and Monun is mainly a differentiate of igneous melts, and the latter, in turn, have mantle “roots” extending to a depth of 200–300 km. The volcano-crater lakes Nios and Monun are confined to the nodes of the intersection of “living” deep faults, revealing the deep horizons of the planet, where in magmatic foci CO2 is predominant as products of differentiation. The author proposed a mechanism for the formation of a solid gas hydrate shell, a relatively tightly sealed volcanic crater. This giant gas hydrate plug prevented the gradual-passive circulation, i. e. outflow of CO2 into the hydrosphere and atmosphere coming from deep and intermediate magmatic foci. So, under the gas hydrate shell of the lakes Nios and Monun, a large amount of CO2 accumulated. Explosive emissions of significant amounts of lethal gas could appear only with the geodynamic activation of the earth’s crust, where these unique volcano-crater lakes are located. Seismotectonic processes contributed to the destruction of the gas hydrate shell and the breakthrough of CO2 through fractures, cracks and through the water membrane to the surface. Emissions of gases on the volcano-crater lakes Nyos and Monun are the brightest example (indicator) of the Earth’s carbon dioxide-deep degassing.

2021 ◽  
Vol 17 (1) ◽  
pp. 75-84
Author(s):  
V.V. Gordienko ◽  
L.Ya. Gordienko ◽  
J.A. Goncharova ◽  
V.M. Tarasov

An attempt is considered to supplement the criteria for identifying zones of recent activation in the territory of Ukraine with another one — data on the results of studies of helium concentration in ground-water. The previous analysis of information showed that as regional criteria, information can be applied on anomalies in heat flow, increased electrical conductivity of Earth’s crustal and the upper mantle rocks, distribution of mantle gravitational anomalies, and surface uplifts over the past millions of years. They were chosen among others precisely because of the dissemination of relevant information throughout the country. This requirement is also met by the permeability Scheme of the earth’s crust of Ukraine, which is a fragment of the permeability Scheme of the earth’s crust of the European part of the USSR based on the results of helium studies. The principal applicability of such information for solving the problem is shown. Areas of maximum helium concentrations in near-surface waters are indicated, primarily those associated with disjunctive dislocation. Theу are concentrated in the south-west of Ukraine and in Moldova. The disadvantages of the Scheme are noted, due to poor study and significant variations in background gas concentrations, directly caused not by recent activation, but by the peculiarities of helium generation by rocks of the upper part of the earth’s crust. There are inconsistencies between the previously obtained ideas about the activated zones and the data of the Scheme. They are especially large in the Carpathian, Crimean and Donetsk regions, and are noticeable in others. Therefore, it seems necessary, first, to continue research, thicken the network of observations and develop a methodology for analyzing their results.


2014 ◽  
Vol 40 (2) ◽  
pp. 58-67
Author(s):  
Ruta Puziene ◽  
Asta Anikeniene ◽  
Gitana Karsokiene

In the research of vertical movements of the earth’s crust, examination of statistical correlations between the measured vertical movements of the earth’s crust and territorial geo-indexes is accomplished with the help of mathematical statistical analysis. Availability of the precise repeated levelling measuring data coupled with the preferred research methodology offer a chance to determine and predict recent vertical movements of the earth’s crust. For the inquiry into recent vertical movements of the earth’s crust, a Lithuanian class I vertical network levelling polygon was used. Drawing on measurements made in the polygon, vertical velocities of earth’s crust movements were calculated along the following levelling lines. For determining the relations shared by vertical movements of the earth’s crust and territorial geo-parameters, the following territory-defining parameters are accepted. Examination of the special qualities of relations shared by vertical movements of the earth’s crust and geo-parameters in the territory under research contributed to the computation of correlation matrices. Regression models are worked out taking into consideration only particular territory-defining geo-parameters, i.e. only those parameters which exhibit the following correlation coefficient value of the vertical earth’s crust movement velocity: r ≥ 0.50. A forecast of the velocities pertaining to vertical movements of the earth’s crust in the territory under examination was made with the application of regression models. Further in the process of this research, a map was compiled specifying the velocities of vertical movements of the earth’s crust in the territory. In the eastern part of this territory, the earth’s crust rises at a rate of up to 3 mm/year; while in the western part of it, the earth crust lowers at a rate of up to –1.5 mm/year. In order to pinpoint territories characterised by temperate and regular rising/lowering or intensive rising/lowering, a map of horizontal gradients of recent vertical earth crust movements in the territory enclosed by levelling polygon was compiled.


1982 ◽  
Vol 72 (5) ◽  
pp. 1707-1715
Author(s):  
Frand Wyatt ◽  
Kent Beckstrom ◽  
Jon Berger

abstract An instrument has been developed to monitor the horizontal displacement of near-surface monuments, so as to reduce the noise of observatory-based strain measurements. The device measures the shear strain in the upper 24 m of the earth's crust using an equal path length Michelson interferometer. The magnitude of the observations (∼50 μm) indicates that such measurements are needed to interpret the records produced by precision strainmeters.


2015 ◽  
Vol 4 (2) ◽  
pp. 149-154 ◽  
Author(s):  
A. M. Prystai ◽  
V. O. Pronenko

Abstract. The study of the deep structure of the Earth's crust is of great interest for both applied (e.g. mineral exploration) and scientific research. For this the electromagnetic (EM) studies which enable one to construct the distribution of electrical conductivity in the Earth's crust are of great use. The most common method of EM exploration is magnetotelluric sounding (MT). This passive method of research uses a wide range of natural geomagnetic variations as a powerful source of electromagnetic induction in the Earth, producing telluric current variations there. It includes the measurements of variations of natural electric and magnetic fields in orthogonal directions at the surface of the Earth. By this, the measurements of electric fields are much more complicated metrological processes, and, namely, they limit the precision of MT prospecting. This is especially complicated at deep sounding when measurements of long periods are of interest. The increase in the accuracy of the electric field measurement can significantly improve the quality of MT data. Because of this, the development of a new version of an instrument for the measurements of electric fields at MT – both electric field sensors and the electrometer – with higher levels relative to the known instrument parameter level – was initiated. The paper deals with the peculiarities of this development and the results of experimental tests of the new sensors and electrometers included as a unit in the long-period magnetotelluric station LEMI-420 are given.


Author(s):  
Alex Maltman

We come now to the metamorphic rocks, the result of modifications to already existing rock. I’m well aware that this can all seem a bit mysterious. After all, no one has ever seen the changes take place; no one has ever witnessed a metamorphic rock form—the processes are imperceptibly slow, and they happen deep in the Earth’s crust, way out of sight. Why should these changes happen? Well, they are primarily driven by increases in pressure and temperature, so we begin with a look at these two factors. There are sites in the Earth’s crust where material becomes progressively buried. It happens, for example, where a tectonic plate is driving underneath another one, taking rocks ever deeper as it descends. It can happen in the central area of a plate that is stretching and sagging, allowing thick accumulations of sediment. It’s pretty self-evident that as buried material gets deeper, because of the growing weight of rocks above bearing down due to gravity, it becomes subjected to increasing burial pressure. Less intuitive, though, is the fact that this pressure acts on a volume of rock equally in all directions. Imagine a small volume of rock at depth. It’s bearing the weight of the rocks above it, and so it responds by trying to move downward and to spread out laterally. Of course, it can’t because it’s constrained all around by other volumes of rock that are trying to do exactly the same thing. And so the downward gravity is translated into an all-around pressure. It’s the same effect as diving down to the bottom of a swimming pool. You feel the increased pressure owing to the weight of water above, but you feel it equally in all directions. All-round pressure like this can cause things to change in volume, through changing their density, but it can’t change their shape. However, there can be another kind of pressure as well, and this does have direction, and it can cause change of shape. In the Earth, we call it tectonic stress. It comes about through heat-driven motions in the Earth, including the movement of tectonic plates.


2018 ◽  
Vol 56 ◽  
pp. 04019
Author(s):  
Nikolay Grib ◽  
Valery Imaev ◽  
Galina Grib ◽  
Lyudmila Imaeva ◽  
Igor Kolodeznikov

Impulse loads, arising due to the high natural seismicity of the South Yakutia region, exercise both direct and indirect effects on the upper part of the Earth's crust during industrial explosions. The direct effects result from nonlinear displacements caused by the blast wave and the subsequent formation of new disturbances. The indirect effects arise due to the activation of structural elements along geological contacts, leading to the emergence of technogenic seismicity foci. The foci of induced seismicity are either confined to the blast points, or located along the tectonic structures crossing quarry fields. The technogenic impact on the geological environment transforms the independent local seismic process, since explosions trigger a chain of local seismic events. The near-surface layers of the Earth's crust become activated in the area of dynamic influence of active faults. Under the influence of explosions, both the number of seismic events and the average level of released energy alter. Impulse loads on the geological environment lead to a spatial redistribution of the foci of low-energy (K <7) earthquakes. The main form of the geodynamic development of seismogenic faults is the movement of their sides in the form of mutual “slippage”. Seismic events are manifested only when the aforementioned form of deformation is impossible or difficult to develop, in other words, when the stress-state areas of the Earth's crust develop. Therefore, the shaking impact of blasts can be considered as a factor contributing to the predominance of aseismic forms of fault motion in the form of smooth slippage of their sides. In conclusion, the impact of industrial blasts can not only activate faults around the mining area, but also have an unloading effect on the foci of seismic hazard forming in the interior, i.e. the redistribution of earthquake energy in terms of reducing earthquake energy class.


2018 ◽  
Vol 56 ◽  
pp. 02007 ◽  
Author(s):  
Andrian Batugin

Despite advances in rockburst studies, suddenness of major geodynamic events is reported in a number of cases. Phenomenological tectonophysical model is suggested to explain some geodynamics phenomena. Prof. Petukhov I.M. suggested a concept: the Earth crust's critical stress condition is developed due to horizontal compressive forces and entrains rock strata from the sub-surface to a certain depth. The conditions that induced earthquake in 2013 at Bachat coal field in south west Kuzbass are considered in terms of critical stress developed in the top layer of the Earth crust. Estimates show that the size of the critical stress zone, produced presumably by interaction of huge (over 100 km) crustal blocks is at least 10km. Whereas critical stress zone is located in the top part of Earth's crust, mining operations in the pit including blast operations was making a direct impact on this area. Shallow occurrence of critical stress area and its size can provide insight into why mining works brought about induced earthquake with hypocenter at the depth of several kilometers. The conclusion has been made that regional areas of critical stress within rock massif developed as a result of crustal blocks interaction create hazard medium for mining.


1992 ◽  
Vol 202 (2-4) ◽  
pp. 251-256 ◽  
Author(s):  
S.I. Kesselman ◽  
P.E. Kotliar ◽  
O.A. Kuchay ◽  
S.A. Tychkov ◽  
L.I. Serebriakova

2001 ◽  
Vol 6 (4) ◽  
pp. 281-290
Author(s):  
E. V. Artyushkov

The upper part of the Earth—the lithospheric layer,∼100 km thick, is rigid. Segments of this spherical shell–lithospheric plates are drifting over a ductile asthenosphere. On the continents, the lithosphere includes the Earth's crust,∼40 km thick, which is underlain by peridotitic rocks of the mantle. In most areas, at depths∼20–40 km the continental crust is composed of basalts with density∼2900kg m−3. At temperature and pressure typical for this depth, basalts are metastable and should transform into another assemblage of minerals which corresponds to garnet granulites and eclogites with higher densities 3300–3600 kgm−3. The rate of this transformation is extremely low in dry rocks, and the associated contraction of basalts evolves during the time≥108a. To restore the Archimede's equilibrium, the crust subsides with a formation of sedimentary basins, up to 10–15 km deep.Volumes of hot mantle with a water-containing fluid emerge sometimes from a deep mantle to the base of the lithosphere. Fluids infiltrate into the crust through the mantle part of the lithosphere. They catalyze the reaction in the lower crust which results in rock contraction with a formation of deep water basins at the surface during∼106a. The major hydrocarbon basins of the world were formed in this way. Infiltration of fluids strongly reduces the viscosity of the lithosphere, which is evidenced by narrow-wavelength deformations of this layer. At times of softening of the mantle part of the lithosphere, it becomes convectively replaced by a hotter and lighter asthenosphere. This process has resulted in the formation of many mountain ranges and high plateaus during the last several millions of years. Softening of the whole lithospheric layer which is rigid under normal conditions allows its strong compressive and tensile deformations. At the epochs of compression, a large portion of dense eclogites that were formed from basalts in the lower crust sink deeply into the mantle. In some cases they carry down lighter blocks of granites and sedimentary rocks of the upper crust which delaminate from eclogitic blocks and emerge back to the crust. Such blocks of upper crustal rocks include diamonds and other minerals which were formed at a depth of 100–150 km.


1876 ◽  
Vol 3 (8) ◽  
pp. 337-345 ◽  
Author(s):  
John W. Judd

The study of the great mountain ranges of America by Rogers, Hall, Dana, Le Conte, Hunt, and other geologists, has now thrown much new light on the earth-movements which precede and accompany the formation of mountain chains. As the result of these researches, it appears certain that the preliminary stage in the formation of every mountain system has consisted in a long-continued depression of the area which is afterwards to become its site; and, in consequence of this prolonged subsidence, the accumulation of an enormous thickness of stratified rocks, within the great trough so formed, has taken place. Of this character, as is now well known, have been the earlier manifestations of the subterranean forces that were concerned in the formation of the Appalachians, Green Mountains, and other American ranges; the districts in which they are situated were subjected to long-continued depression, which permitted of an abnormal development of all the members of the sedimentary deposits formed during this initiatory period; and it was by the folding, metamorphism and crushing together of this abnormally thickened portion of the earth's crust that the indurated and elevated masses have been formed which denudation has sculptured into the existing mountain chains.


Sign in / Sign up

Export Citation Format

Share Document