Contemporary Methods of Designing Rail Vehicle Running Systems with the Use of CAD and CAM Solutions

2020 ◽  
Vol 64 (187) ◽  
pp. 75-80
Author(s):  
Tomasz Antkowiak ◽  
Marcin Kruś

The article discusses the process of designing the running system of a rail vehicle using CAD and CAM tools as the solutions supporting the process. It describes the particular stages of design taking its final shape: from a preliminary design, through a detailed design, ending with the stage of production. Each stage includes a presentation of how CAD and CAM tools are used to support design engineers in their practice. Keywords: running system, design, CAD, CAM

1983 ◽  
Author(s):  
George S. Hazen ◽  
Steve Killing

From the perspective of the design office, this paper examines the manner in which computers are streamlining and changing the design process for today's sailing yachts. Starting with preliminary design and progressing through the more detailed aspects of final design, the computer's varying roles in the design process are traced with examples drawn from currently implemented programs. In addition to its customary role as a bookkeeper, the computer's remarkable graphics capabilities are highlighted. The authors offer a glimpse of what programs and hardware tomorrow's yacht designer will use as frequently as his curves and battens. The paper covers such subjects as design follow-up, sailing analysis and feedback into the original design process. Since designers are not the only ones to benefit from the computer revolution, the authors have included sections on computer generated sailing aids for the yachtsman and possible CAD/CAM applications for the boatbuilder.


Author(s):  
Jairo da Costa Junior ◽  
Ana Laura Rodrigues dos Santos ◽  
Jan Carel Diehl

As our society faces large-scale wicked problems like global warming, resource depletion, poverty and humanitarian emergencies, problem solvers are required to apply new reasoning models more appropriate to deal with these complex societal problems. Dealing with these problems poses unfamiliar challenges in contexts with poor financial and infrastructural resources. Systems Oriented Design (SOD) has been recognized in the literature as a promising approach, capable to support design engineers to deal with these complex societal problems. This paper explores the application of SOD in the development of Product-Service System (PSS) concepts by student teams in a multidisciplinary master course. The course resulted in twelve concepts that were analysed using a case study approach with the support of protocol analysis. The analysis results in a description of advantages, context- and process-related challenges of using SOD. From an education point-of-view, the results demonstrate that even though SOD provides students with a broad knowledge base and skills to deal with problems in complex societal contexts, there is still the need to introduce the appropriate scope and depth in the design engineering curricula, making the transition from traditional product design, a challenging one.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


1972 ◽  
Vol 9 (02) ◽  
pp. 205-215
Author(s):  
william G. Bullock ◽  
Frank D. Yonika

This paper is a summary of a report prepared by the Office of Ship Construction to provide a base reference document from which a detailed design for an automated steam propulsion plant will be developed for unattended engine room operation. As the design details are developed, it may be anticipated that some of the concepts and preliminary design requirements discussed herein may be modified and/or changed to reflect these developments. It should also be noted that the concepts and opinions expressed herein are those of the authors and do not necessarily reflect those of the Maritime Administration.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Bo Wang ◽  
Zhongxi Hou ◽  
Zhaowei Liu ◽  
Qingyang Chen ◽  
Xiongfeng Zhu

This paper presents a preliminary design methodology for small unmanned battery powered tailsitters. Subsystem models, including takeoff weight, power and energy consumption models, and battery discharge model, were investigated, respectively. Feasible design space was given by simulation with mission and weight constraints, while the influences of wing loading and battery ratio were analyzed. Case study was carried out according to the design process, and the results were validated by previous designs. The design methodology can be used to determine key parameters and make necessary preparations for detailed design and vehicle realization of small battery powered tailsitters.


Author(s):  
Maxime Moret ◽  
Alexandre Delecourt ◽  
Hany Moustapha ◽  
Francois Garnier ◽  
Acher-Igal Abenhaim

The use of Multidisciplinary Design Optimization (MDO) techniques at the preliminary design phase (PMDO) of a gas turbine engine allows investing more effort at the pre-detailed phase in order to prevent the selection of an unsatisfactory concept early in the design process. Considering the impact of the turbine tip clearance on an engine’s efficiency, an accurate tool to predict the tip gap is a mandatory step towards the implementation of a full PMDO system for the turbine design. Tip clearance calculation is a good candidate for PMDO technique implementation considering that it implies various analyses conducted on both the rotor and stator. As a first step to the development of such tip clearance calculator satisfying PMDO principles, the present work explores the automation feasibility of the whole analysis phase of a turbine rotor preliminary design process and the potential increase in the accuracy of results and time gains. The proposed conceptual system integrates a thermal boundary conditions automated calculator and interacts with a simplified air system generator and with several conception tools based on parameterized CAD models. Great improvements were found when comparing this work’s analysis results with regular pre-detailed level tools, as they revealed to be close to the one generated by the detailed design tools used as target. Moreover, this design process revealed to be faster than a common preliminary design phase while leading to a reduction of time spent at the detailed design phase. By requiring fewer user inputs, this system decreases the risk of human errors while entirely leaving the important decisions to the designer.


Author(s):  
G. N. Levari ◽  
J. D. Sauer ◽  
A. Cohn

The design of an advanced cooled first stage for a full-scale utility size combustion turbine is discussed. The preliminary design work involved evaluating three candidate “skin/spar” concepts: the shell/spar, Lamilloy*/spar and hybrid configurations. A shell/spar concept at 1600°F (871°C) maximum metal temperature was selected for continued development because it ensures against transpiration hole plugging; temperature selection was based on performance and corrosion considerations. The detailed design of the shell/spar advanced cooled stage is featured in this presentation and includes heat transfer and mechanical designs, stress analyses and durability considerations, and material selection. The fabrication process and acceptance tests planned for the advanced cooling components are described along with the shop and field tests proposed for the demonstration engine.


1998 ◽  
Vol 120 (2) ◽  
pp. 349-357 ◽  
Author(s):  
H. C. Kim ◽  
J. P. de Vaujany ◽  
M. Guingand ◽  
D. Play

In this paper, a numerical computer software based on the Finite Prism Method, is proposed in order to design external cylindrical spur gears with a web. It enables computing load sharing, pressure distribution, meshing stiffness and 3D tooth fillet stresses. The software is generally used during the detailed design for optimizing gear meshing. The software is also used to quantify the influences of web design parameters. The process is based on a statistical method: experimental design, that permits studying the influence of parameters. Thus, a simple formula was found in order to estimate the maximum principal stress in the tooth root. The results of the formula were compared with those found in the bibliography. The formula can be useful during the preliminary design for predimensioning webbed spur gears in design department.


Sign in / Sign up

Export Citation Format

Share Document