The Design Requirement for an Unattended Engine Room Steam Propulsion Plant

1972 ◽  
Vol 9 (02) ◽  
pp. 205-215
Author(s):  
william G. Bullock ◽  
Frank D. Yonika

This paper is a summary of a report prepared by the Office of Ship Construction to provide a base reference document from which a detailed design for an automated steam propulsion plant will be developed for unattended engine room operation. As the design details are developed, it may be anticipated that some of the concepts and preliminary design requirements discussed herein may be modified and/or changed to reflect these developments. It should also be noted that the concepts and opinions expressed herein are those of the authors and do not necessarily reflect those of the Maritime Administration.

2020 ◽  
Vol 64 (187) ◽  
pp. 75-80
Author(s):  
Tomasz Antkowiak ◽  
Marcin Kruś

The article discusses the process of designing the running system of a rail vehicle using CAD and CAM tools as the solutions supporting the process. It describes the particular stages of design taking its final shape: from a preliminary design, through a detailed design, ending with the stage of production. Each stage includes a presentation of how CAD and CAM tools are used to support design engineers in their practice. Keywords: running system, design, CAD, CAM


2012 ◽  
Vol 170-173 ◽  
pp. 1207-1210
Author(s):  
Jun Hao Chen ◽  
Rui Zhang

A new round of upsurge of mine well construction were set off in the west area, but there are many problems, this article through the field measure of special strata freezing temperature in Bo-jiang-hai-zi coal mine airshaft, use the freezing shaft sinking security information network visualization platform that developed by Anhui University of Science and Technology, analysis several different strata, obtain the overall temperatre decline rate, and compare the difference between in-site shaft well temperature and the calculation value at different position, and difference is very small, it shows that the platform can good response the actual situation. Through calculation, the frozen wall thickness, average of frozen wall temperature, shaft well temperature are meet the engineering design requirement, so propose that in west area at the freezing method mine well construction, the main purpose is waterproof, and use single circle tube freezing can satisfy engineering design requirements.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2429-2434 ◽  
Author(s):  
CHEOL KIM ◽  
KWANG-JOONG KIM

Fine pitch microprobe arrays are microneedle-like probes for inspecting the pixels of LCD panels or IC. They are usually made of multi-layers of metallic, nonmetallic, or combination of the two. The design requirement for a contacting force is less than 2 gf and a deflection should be less than 100 µm. Many microprobe shapes satisfying the design requirements are possible. A cantilever-type microprobe having many needles was chosen and optimized in this study. Several candidate shapes were chosen using topology and shape optimization technique subjected to design requirements. Then, the microprobe arrays were fabricated using the process applied for MEMS fabrication and they were made of BeNi , BeCu , or Si . The contact probing forces and deflections were measured for checking the results from optimum design by newly developed measuring equipment in our laboratory. Numerical and experimental results were compared and both showed a good correlation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Bo Wang ◽  
Zhongxi Hou ◽  
Zhaowei Liu ◽  
Qingyang Chen ◽  
Xiongfeng Zhu

This paper presents a preliminary design methodology for small unmanned battery powered tailsitters. Subsystem models, including takeoff weight, power and energy consumption models, and battery discharge model, were investigated, respectively. Feasible design space was given by simulation with mission and weight constraints, while the influences of wing loading and battery ratio were analyzed. Case study was carried out according to the design process, and the results were validated by previous designs. The design methodology can be used to determine key parameters and make necessary preparations for detailed design and vehicle realization of small battery powered tailsitters.


Author(s):  
Maxime Moret ◽  
Alexandre Delecourt ◽  
Hany Moustapha ◽  
Francois Garnier ◽  
Acher-Igal Abenhaim

The use of Multidisciplinary Design Optimization (MDO) techniques at the preliminary design phase (PMDO) of a gas turbine engine allows investing more effort at the pre-detailed phase in order to prevent the selection of an unsatisfactory concept early in the design process. Considering the impact of the turbine tip clearance on an engine’s efficiency, an accurate tool to predict the tip gap is a mandatory step towards the implementation of a full PMDO system for the turbine design. Tip clearance calculation is a good candidate for PMDO technique implementation considering that it implies various analyses conducted on both the rotor and stator. As a first step to the development of such tip clearance calculator satisfying PMDO principles, the present work explores the automation feasibility of the whole analysis phase of a turbine rotor preliminary design process and the potential increase in the accuracy of results and time gains. The proposed conceptual system integrates a thermal boundary conditions automated calculator and interacts with a simplified air system generator and with several conception tools based on parameterized CAD models. Great improvements were found when comparing this work’s analysis results with regular pre-detailed level tools, as they revealed to be close to the one generated by the detailed design tools used as target. Moreover, this design process revealed to be faster than a common preliminary design phase while leading to a reduction of time spent at the detailed design phase. By requiring fewer user inputs, this system decreases the risk of human errors while entirely leaving the important decisions to the designer.


Author(s):  
G. N. Levari ◽  
J. D. Sauer ◽  
A. Cohn

The design of an advanced cooled first stage for a full-scale utility size combustion turbine is discussed. The preliminary design work involved evaluating three candidate “skin/spar” concepts: the shell/spar, Lamilloy*/spar and hybrid configurations. A shell/spar concept at 1600°F (871°C) maximum metal temperature was selected for continued development because it ensures against transpiration hole plugging; temperature selection was based on performance and corrosion considerations. The detailed design of the shell/spar advanced cooled stage is featured in this presentation and includes heat transfer and mechanical designs, stress analyses and durability considerations, and material selection. The fabrication process and acceptance tests planned for the advanced cooling components are described along with the shop and field tests proposed for the demonstration engine.


Computers ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 80
Author(s):  
James Mountstephens ◽  
Jason Teo

Design is a challenging task that is crucial to all product development. Advances in design computing may allow machines to move from a supporting role to generators of design content. Generative Design systems produce designs by algorithms and offer the potential for the exploration of vast design spaces, the fostering of creativity, the combination of objective and subjective requirements, and the revolutionary integration of conceptual and detailed design phases. The application of generative methods to the design of discrete, physical, engineered products has not yet been reviewed. This paper reviews the Generative Product Design systems developed since 1998 in order to identify significant approaches and trends. Systems are analyzed according to their primary goal, generative method, the design phase they focus on, whether the generation is automatic or interactive, the number of design options they generate, and the types of design requirements involved in the generation process. Progress using this approach is recognized, and a number of challenges that must be addressed in order to achieve widespread acceptance are identified. Possible solutions are offered, including innovative approaches in Human–Computer Interaction.


1998 ◽  
Vol 120 (2) ◽  
pp. 349-357 ◽  
Author(s):  
H. C. Kim ◽  
J. P. de Vaujany ◽  
M. Guingand ◽  
D. Play

In this paper, a numerical computer software based on the Finite Prism Method, is proposed in order to design external cylindrical spur gears with a web. It enables computing load sharing, pressure distribution, meshing stiffness and 3D tooth fillet stresses. The software is generally used during the detailed design for optimizing gear meshing. The software is also used to quantify the influences of web design parameters. The process is based on a statistical method: experimental design, that permits studying the influence of parameters. Thus, a simple formula was found in order to estimate the maximum principal stress in the tooth root. The results of the formula were compared with those found in the bibliography. The formula can be useful during the preliminary design for predimensioning webbed spur gears in design department.


2012 ◽  
Vol 525-526 ◽  
pp. 197-200
Author(s):  
Omar Bacarreza ◽  
M.H. Aliabadi ◽  
A. Apicella

A multilevel multiobjective platform for structural sizing reproducing the sequence of actions taken during design and structural sizing in industry is presented in this paper. This platform is integrated at two design levels labeled as Preliminary Design Level and Detailed Design Level. The set of design variables can be divided into a group of variables describing the main conceptual layout that affect the dimensions and architecture of the model and a second group of variables influencing the material and mechanical behavior. This kind of approach can be effective if it is possible to separate the constraints that are strongly dependent on the design variables of different design levels.


Author(s):  
D. Xue ◽  
H. Yang ◽  
Y. L. Tu

This research introduces an evolutionary design database model to describe design requirements and design results developed at different design stages from conceptual design to detailed design. In this model, the evolutionary design database is represented by a sequence of worlds corresponding to the design descriptions at different design stages. The design requirements and design results in each world are modeled using a database representation scheme that integrates both geometric descriptions and non-geometric descriptions. In each world, only the differences with its ancestor world are recorded. When the design descriptions in one world are changed, these changes are then propagated to its descendant worlds automatically. Consistency of the design descriptions in descendant worlds is also checked when design descriptions in an ancestor world are changed. Case study is conducted to show the effectiveness of this evolutionary design database model.


Sign in / Sign up

Export Citation Format

Share Document