scholarly journals Smart irrigation system based on IoT

Author(s):  
arushi dheer ◽  
M. L. sharma ◽  
krishna tripathi

<div><div><div><div><p>Agriculture is the backbone of the Indian economy. The Indian agriculture sector accounts for 18% of the gross domestic product and employs nearly 50% of the country's workforce, with increasing population, water shortage and ever-growing demand for food. Since the acres of land available for cultivation remains unchanged, it is critical that we take steps towards increasing productivity and optimizing water usage to increase yield from the land currently available for cultivation. Soil Analysis has become an essential factor for effective cultivation. The need for the automated irrigation system is to overcome over-irrigation and under-irrigation.[1] This research paper proposes an automated irrigation system using Arduino microcontroller, which is cost-effective and can be used on a farm field or average home garden. IoT is an upcoming technology with huge prospects. IoT is a technology which connects things, people, applications, data. Internet of Things (IoT)is a shared network of objects or things which can interact with each other provided the Internet connection—using this technology to implement this system at a lower scale to act as a base model. With the implementation of this project at a large scale, it could bring a significant change in the overall yield and water consumption in agriculture.</p></div></div></div></div>

2020 ◽  
Author(s):  
arushi dheer ◽  
M. L. sharma ◽  
krishna tripathi

<div><div><div><div><p>Agriculture is the backbone of the Indian economy. The Indian agriculture sector accounts for 18% of the gross domestic product and employs nearly 50% of the country's workforce, with increasing population, water shortage and ever-growing demand for food. Since the acres of land available for cultivation remains unchanged, it is critical that we take steps towards increasing productivity and optimizing water usage to increase yield from the land currently available for cultivation. Soil Analysis has become an essential factor for effective cultivation. The need for the automated irrigation system is to overcome over-irrigation and under-irrigation.[1] This research paper proposes an automated irrigation system using Arduino microcontroller, which is cost-effective and can be used on a farm field or average home garden. IoT is an upcoming technology with huge prospects. IoT is a technology which connects things, people, applications, data. Internet of Things (IoT)is a shared network of objects or things which can interact with each other provided the Internet connection—using this technology to implement this system at a lower scale to act as a base model. With the implementation of this project at a large scale, it could bring a significant change in the overall yield and water consumption in agriculture.</p></div></div></div></div>


Author(s):  
Bhavna Dhole ◽  
Pratiksha Patle ◽  
Onkar Patole ◽  
Suprriya Lohar

This paper addresses water scarcity and electricity crisis by designing and implementing smart irrigation system. This system presents the details of a solar-powered automated irrigation system that turns ON/OFF the motor to pass water through the pump required to soil depending on the soil moisture, hence this system minimize the wastage of water. Soil moisture sensor sense the humidity of soil which is transmitted to a remote station. This data will be analyzed and used to pass out water by water pump. This system conserves electricity and conserves water. It is the proposed solution for the now a days energy crisis for the Indian farmers. Cost-effective solar power can be the answer to our energy needs. Solar powered smart irrigation systems are the acknowledgement to the Indian farmer.This system does not work at night in areas without a grid.


2018 ◽  
Vol 8 (12) ◽  
pp. 2601 ◽  
Author(s):  
Saeed Rad ◽  
Lei Gan ◽  
Xiaobing Chen ◽  
Shaohong You ◽  
Liangliang Huang ◽  
...  

Sprinkler irrigation systems are widely used in medium and large scale farms in different forms. However less types are available to apply in small farms due to their high costs. The current study was done according to a novel cost effective design for a semi-permanent sprinkler irrigation system for small farm owners. The new layout known as Corner Pivot Lateral (CPL) was examined in irrigation test center at Lijian Scientific and Technological Demonstration Park, at Nanning city, China. CPL was implemented without a main/sub mainline pipe, by applying a single pivoting lateral at the corner of the plot that directly connected to the resource to convey water from the pump. The lateral moves around the corner using a rotating elbow in a quadrant pattern manually to cover the entire farm. A conventional semi-permanent system was applied for the same farm as reference. A cost analysis on the required components as well as annual operational costs was carried out for comparison and control. Results showed that a lower system component would be needed for the CPL method. Overall, more than a 15% capital cost reduction with 7% annual cost decrement was achieved for CPL in this experiment comparatively. The Catch can technique was applied to examine the CPL system’s efficiency and 79% water distribution uniformity around the sprinkler was obtained. This new method can encourage small estate holders to switch from traditional to pressurized systems which optimizes water application costs.


Author(s):  
Mohini Chaudhari ◽  
Chaitali Das ◽  
Manisha Awari ◽  
Pallavi Bhoye ◽  
Prof. Satish Shrivastava

Agriculture plays the vital role in economics and survival of people in India. Nowadays Indian agriculture faces a two major problem. We know the government has promoted a free supply of electricity to farmers for irrigation purpose to run their motors and pumps. But it is found that the farmers misusing the electricity to run their home appliances such as radio, TV, fans, and etc. This misuse of electricity has brought a considerable problem for government to supply free electricity. The main objective of this project is to design low cost Automated Irrigation System using a Wireless Sensor Network and GPRS Module. The main aim of this project is to provide embedded based system for irrigation to reduce the manual monitoring of the field and GPRS gives their information. This proposed system recognizes whether the free electricity has been used excluding electric motors for pumping water and if so electricity is being misused, it shuts the total stockpile for the farmers through a tripping circuit. By using wireless networks we can intimate the electricity board about this mal convention. The development of this project at experimental level within rural areas is presented and the implementation has to exhibit that the automatic irrigation can be used.


Author(s):  
Selvam Loganathan ◽  
Kavitha Perumal

Background & Objective:: India is one of the foremost agricultural producers in the world; on the other hand, the consumption of water for agricultural purposes in India has been among the highest in the world. Indiscriminate use of inadequate irrigation techniques has led to a critical water deficit in the country. Now with the development of (IoT) Precision Farming and Precision Irrigation are becoming very popular. This paper proposes a cost-effective Automated Irrigation System based on LoRa and Machine Learning, which can be of great help to marginal farmers, for whom agriculture is hardly a profitable venture, mainly due to water scarcity. Methods: In this automated system, LoRa technology is used in Sensor and Irrigation node, in which sensors collect data on soil moisture and temperature and send it to the server through a LoRa gateway. Then the data is fed into a Machine Learning algorithm, which leads to correct prediction of the soil status. Results: Hence, the field needs to be irrigated only if and when it is needed. Conclusion: The system can be remotely monitored using a web application that can be accessed by a mobile phone.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wei Li ◽  
Muhammad Awais ◽  
Weimin Ru ◽  
Weidong Shi ◽  
Muhammad Ajmal ◽  
...  

The motivation for this review paper came from the developing countries where the economy is mostly dependent on agriculture and climate conditions. Based on current conditions and historical records, profitability in production farming depends on making a right and timely operational decision. Precision farming is a systematic program designed to maximize the productivity of agriculture by carefully tailoring the soil and crop management to meet the specific requirements in each field while preserving environmental quality. This review paper highlights the development of an automated irrigation system with portable wireless sensor networks and decision support methods to remotely measure the environmental parameters in an agriculture field. Radio satellite, mobile phones, sensors, internet-based communication, and microcontroller capture the ecological parameters such as soil moisture, temperature, humidity, and light intensity. The knowledge gained from the sensors is transferred directly to the cloud server by using IoT technology. Users from anywhere in the world can display them through an internet-enabled device. Development of sensor-based application in modern agriculture makes it cost-effective and potentially productive and increases the efficiency through precision agriculture farming. Different limitations have been reported in the previously reviewed publications like the shortage of power in the field that can be solved by using a solar panel that recharges the battery at the same time using electricity. Bluetooth application in the agriculture sector is mainly improved by design system optimization. Problems related to transmission and radio range frequency can be solved by using a power class upgraded antenna.


Technology united with research and development has evolved as a grave differentiator of the agriculture sector in India including production, processing, and agriculture packing and marketing of given crops. Near about 50 percent of the Indian workforce was engaged in the agriculture sector but its share in GDP was only 14 percent, much lower in comparison to former. Though, certain agriculture items showed a steady annual increase in terms of kilograms per hectare. Agriculture transformed significantly over the past few decades but when it comes to investment in research and development there is a lot more which needs to be done. The paper analyzes the role of various research and development institutions in boosting the growth of the agriculture sector that helps in attaining sustainable agriculture development and self-sufficiency in the production process since independence. It also focusesed on the various issues faced by these development institutions. The findings unveiled that since independence a lot more was done to boost the research and development in the agriculture sector at both the center and state levels but a proper implementation of these policies along with transparency could bring more desirable outcomes than were gained at present.


Author(s):  
Yan Pan ◽  
Shining Li ◽  
Qianwu Chen ◽  
Nan Zhang ◽  
Tao Cheng ◽  
...  

Stimulated by the dramatical service demand in the logistics industry, logistics trucks employed in last-mile parcel delivery bring critical public concerns, such as heavy cost burden, traffic congestion and air pollution. Unmanned Aerial Vehicles (UAVs) are a promising alternative tool in last-mile delivery, which is however limited by insufficient flight range and load capacity. This paper presents an innovative energy-limited logistics UAV schedule approach using crowdsourced buses. Specifically, when one UAV delivers a parcel, it first lands on a crowdsourced social bus to parcel destination, gets recharged by the wireless recharger deployed on the bus, and then flies from the bus to the parcel destination. This novel approach not only increases the delivery range and load capacity of battery-limited UAVs, but is also much more cost-effective and environment-friendly than traditional methods. New challenges therefore emerge as the buses with spatiotemporal mobility become the bottleneck during delivery. By landing on buses, an Energy-Neutral Flight Principle and a delivery scheduling algorithm are proposed for the UAVs. Using the Energy-Neutral Flight Principle, each UAV can plan a flying path without depleting energy given buses with uncertain velocities. Besides, the delivery scheduling algorithm optimizes the delivery time and number of delivered parcels given warehouse location, logistics UAVs, parcel locations and buses. Comprehensive evaluations using a large-scale bus dataset demonstrate the superiority of the innovative logistics UAV schedule approach.


Sign in / Sign up

Export Citation Format

Share Document