scholarly journals A Single-Switch-per-Bit Topology for mmWave and THz Reconfigurable Reflective Surfaces

Author(s):  
Panagiotis Theofanopoulos

<div> <div> <div> <p>We present novel multi-bit unit-cell topologies for reconfigurable reflective surfaces –RRSs– (e.g., reflectarray antennas) with compact designs for millimeter-wave and terahertz (mmWave/THz) applications. Typically, mmWave/THz RRSs utilize one or multiple single-pole-single-throw (SPST) switches leading to single- or dual-bit modulated surfaces. These surfaces utilize the switches to manipulate the phase of the imping waves, beamforming the reflected waves to the desired direction. As such, RRSs are leveraged either for imaging or wireless communication applications, which typically require the formation of a single beam (no grating lobes) and high gains. The gain and quantization lobe levels of an RRS is strictly related to the number of phase bits utilized in the unit-cell. Explicitly, more phase bits lead to lower quantization errors and better maximum gain/aperture efficiency. However, increasing the number of phase bits requires more SPST switches integrated within the unit-cell, leading to complex designs with high RF losses. Herein, we present, for the first time, RRSs with up to 4 phase quantization bits (16 states) that maintain one switch-per-bit topology thus retaining a low-complexity design. The proposed RRSs is presented alongside a series of analytical and full-wave simulated results. </p> </div> </div> </div>

2021 ◽  
Author(s):  
Panagiotis Theofanopoulos

<div> <div> <div> <p>We present novel multi-bit unit-cell topologies for reconfigurable reflective surfaces –RRSs– (e.g., reflectarray antennas) with compact designs for millimeter-wave and terahertz (mmWave/THz) applications. Typically, mmWave/THz RRSs utilize one or multiple single-pole-single-throw (SPST) switches leading to single- or dual-bit modulated surfaces. These surfaces utilize the switches to manipulate the phase of the imping waves, beamforming the reflected waves to the desired direction. As such, RRSs are leveraged either for imaging or wireless communication applications, which typically require the formation of a single beam (no grating lobes) and high gains. The gain and quantization lobe levels of an RRS is strictly related to the number of phase bits utilized in the unit-cell. Explicitly, more phase bits lead to lower quantization errors and better maximum gain/aperture efficiency. However, increasing the number of phase bits requires more SPST switches integrated within the unit-cell, leading to complex designs with high RF losses. Herein, we present, for the first time, RRSs with up to 4 phase quantization bits (16 states) that maintain one switch-per-bit topology thus retaining a low-complexity design. The proposed RRSs is presented alongside a series of analytical and full-wave simulated results. </p> </div> </div> </div>


2017 ◽  
Vol 10 (4) ◽  
pp. 446-452 ◽  
Author(s):  
Mustafa K. Taher Al-Nuaimi ◽  
Wei Hong ◽  
Xiqi Gao

This paper presents the design of all dielectric non-absorptive phase gradient reflective surfaces that can be used to manipulate the reflected electromagnetic waves at millimeter-wave regime. Compared with a bare perfect electrical conductor reflector which obeys the classical Snell's law of reflection, the presented design can effectively alter both the shape and level of the backscattered energy and thus radar cross section (RCS) reduction is achieved in the specular direction. One- and two-dimensional phase gradient reflective dielectric surfaces of phase change about 72° across their apertures are designed and their ability to manipulate the reflected waves under normal incidence are investigated both by means of full-wave simulations and experimentally tested for validation. More than 6 dB of specular RCS reduction is achieved from about 66.5–78.2 GHz.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tammy Chang ◽  
Saptarshi Mukherjee ◽  
Nicholas N. Watkins ◽  
David M. Stobbe ◽  
Owen Mays ◽  
...  

AbstractThis article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1259
Author(s):  
Dmitry Kozlov ◽  
Irina Munina ◽  
Pavel Turalchuk ◽  
Vitalii Kirillov ◽  
Alexey Shitvov ◽  
...  

A new implementation of a beam-steering transmitarray is proposed based on the tiled array architecture. Each pixel of the transmitarray is manufactured as a standalone unit which can be hard-wired for specific transmission characteristics. A set of complementary units, providing reciprocal phase-shifts, can be assembled in a prescribed spatial phase-modulation pattern to perform beam steering and beam forming in a broad spatial range. A compact circuit model of the tiled unit cell is proposed and characterized with full-wave electromagnetic simulations. Waveguide measurements of a prototype unit cell have been carried out. A design example of a tiled 10 × 10-element 1-bit beam-steering transmitarray is presented and its performance benchmarked against the conventional single-panel, i.e., unibody, counterpart. Prototypes of the tiled and single-panel C-band transmitarrays have been fabricated and tested, demonstrating their close performance, good agreement with simulations and a weak effect of fabrication tolerances. The proposed transmitarray antenna configuration has great potential for fifth-generation (5G) communication systems.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mohamed Alouzi ◽  
Francois Chan ◽  
Claude D'Amours

2017 ◽  
Vol 59 (6) ◽  
pp. 1300-1305 ◽  
Author(s):  
Nianzu Zhang ◽  
Guangqi Yang ◽  
Jianfeng Zhai

2021 ◽  
Vol 63 (9) ◽  
pp. 1376
Author(s):  
Н.И. Сорокин ◽  
В.В. Гребенев ◽  
Д.Н. Каримов

The anisotropy of anionic conductivity in crystals of a superionic conductor CeF3 with the tysonite structure (sp. gr. P-3с1) has been studied for the first time. The conductivity measurements at temperatures from 300 K to 600 K were carried out along the principal a- and c-axes of trigonal unit cell of the crystal. The maximum value of electrical conductivity is observed along the c-axis. The superionic CeF3 crystals have the weak anisotropy of electrical conductivity equal to σ||c/σ||a = 2.4 and σ||c = 5.6 10–4 S/cm at 500 K. The anisotropy effect of anionic conductivity in individual fluorides with the tysonite structure is discussed in connection with the peculiarities of their atomic structure.


2017 ◽  
Vol 6 (2) ◽  
pp. 64
Author(s):  
E. Zarnousheh Farahani ◽  
S. Jarchi ◽  
A. Keshtkar

In this paper, an ultrathin planar nonlinear metamaterial slab is designed and simulated. Nonlinearity is provided through placing diodes in each metamaterial unit cell. The diodes are auto-biased and activated by an incident wave. The proposed structure represents a broadband switching property between two transmission and reflection states depending on the intensity of the incident wave. High permittivity values are presented creating a near zero effective impedance at low power states, around the second resonant mode of the structure unit cell; as the result, the incident wave is reflected. Increasing the incident power to the level which can activate the loaded diodes in the structure results in elimination of the resonance and consequently a drop in the permittivity values near the permeability one as well as a switch to the transmission state. A full wave as well as a nonlinear simulations are performed. An optimization method based on weed colonization is applied to the unit cell of the metamaterial slab to achieve the maximum switching bandwidth. The structure represents a 24% switching bandwidth of a 10 dB reduction in the reflection coefficient.


ETRI Journal ◽  
2018 ◽  
Vol 40 (3) ◽  
pp. 389-395 ◽  
Author(s):  
Farzad Khajeh-Khalili ◽  
Mohammad Amin Honarvar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document