scholarly journals Low-Carbon Operation of a Multi-Energy System with Hydrogen-Based Vehicle Applications

Author(s):  
Jie Mei ◽  
Christopher Lee ◽  
James L. Kirtley

In order to cope with the challenges of improving energy efficiency, increasing the integration of renewable energy, and achieving carbon emission reduction, multi-energy systems have received more and more attention in recent years and have been developing rapidly. Traditionally, different energy infrastructures are usually scheduled and operated independently, which leads to inefficient use of energy and waste of resources. By integrating into a multi-energy system, different energy infrastructures can be coupled and optimized into one unit. In this article, from a low-carbon point of view, the optimal scheduling of a real multi-energy system with hydrogen-based vehicle applications is proposed. The simulation results show that the proposed optimal scheduling can help quantify the daily operation cost and carbon emissions and achieve considerably operation cost saving and carbon reduction by reasonably arranging and utilizing all the devices in the system.

2021 ◽  
Author(s):  
Jie Mei ◽  
Christopher Lee ◽  
James L. Kirtley

In order to cope with the challenges of improving energy efficiency, increasing the integration of renewable energy, and achieving carbon emission reduction, multi-energy systems have received more and more attention in recent years and have been developing rapidly. Traditionally, different energy infrastructures are usually scheduled and operated independently, which leads to inefficient use of energy and waste of resources. By integrating into a multi-energy system, different energy infrastructures can be coupled and optimized into one unit. In this article, from a low-carbon point of view, the optimal scheduling of a real multi-energy system with hydrogen-based vehicle applications is proposed. The simulation results show that the proposed optimal scheduling can help quantify the daily operation cost and carbon emissions and achieve considerably operation cost saving and carbon reduction by reasonably arranging and utilizing all the devices in the system.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2307 ◽  
Author(s):  
David Drysdale ◽  
Brian Vad Mathiesen ◽  
Henrik Lund

Energy systems in cities need to be decarbonized and are becoming more integrated via energy sector coupling. Today, cities often use simple methods to assess their low carbon targets, e.g., carbon calculators, and these methods use annualized carbon reduction potentials. For example, reductions from heat savings in buildings or fuel demand in transport. This is done because it is simple and fast. This paper describes a methodology that goes beyond carbon calculators and assesses highly renewable energy systems. The methodology is carried out for a case city—Sønderborg, Denmark. Using a national 100% renewable energy study and a suitable energy system analysis tool (EnergyPLAN), the method accounts for inter-sector coupling and energy system dynamics. The energy system is assessed by comparing the results from the analysis tool against numerous key sustainability factors for a Smart Energy System. The paper illustrates how the method delivers a sustainable 100% renewable Smart Energy System for Sønderborg, which can be part of the Danish energy system in 2050 based on local resources. The paper discusses the broader applicability of the method within strategic energy planning.


Author(s):  
Nenghan Zhang ◽  
Yufeng Wang ◽  
Xiyan Jian ◽  
Yibo Ding

With the development of energy internet, integrated energy system can effectively reduce carbon emissions and improve the utilization of renewable energy. In this paper, a low-carbon optimal scheduling model of integrated energy system considering heat loss of heat network pipeline is proposed. Based on the study of concentrating solar power (CSP) plant and heat storage tank (HS), an optimal scheduling model is established, which takes system operation cost, environmental pollution and penalty cost of abandoning wind and solar energy as objectives. Through the analysis of example results, it is proved that the model proposed in this paper can achieve the goal of reliable, low-carbon and economic operation of the system. At the same time, it shows that CSP unit can reduce the operation cost of system and increase energy coupling and utilization.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2539
Author(s):  
Zhengjie Li ◽  
Zhisheng Zhang

At present, due to the errors of wind power, solar power and various types of load forecasting, the optimal scheduling results of the integrated energy system (IES) will be inaccurate, which will affect the economic and reliable operation of the integrated energy system. In order to solve this problem, a day-ahead and intra-day optimal scheduling model of integrated energy system considering forecasting uncertainty is proposed in this paper, which takes the minimum operation cost of the system as the target, and different processing strategies are adopted for the model. In the day-ahead time scale, according to day-ahead load forecasting, an integrated demand response (IDR) strategy is formulated to adjust the load curve, and an optimal scheduling scheme is obtained. In the intra-day time scale, the predicted value of wind power, solar power and load power are represented by fuzzy parameters to participate in the optimal scheduling of the system, and the output of units is adjusted based on the day-ahead scheduling scheme according to the day-ahead forecasting results. The simulation of specific examples shows that the integrated demand response can effectively adjust the load demand and improve the economy and reliability of the system operation. At the same time, the operation cost of the system is related to the reliability of the accurate prediction of wind power, solar power and load power. Through this model, the optimal scheduling scheme can be determined under an acceptable prediction accuracy and confidence level.


2014 ◽  
Vol 27 (1) ◽  
pp. 97-108
Author(s):  
Yael Parag

Traditional literature and policy approach to energy security focus on the security of energy supply. It is argued here that a supply-centric approach to energy security is too narrow to account for the complex nature of energy systems and tends to overlook energy users, their expectations from, interaction with and roles in future low carbon energy systems. From users’ point of view, be they households, businesses or governments, the supply of kWh or oil barrels is often meaningless. What matters is not the source of energy, but rather the services provided by it. Therefore, securing energy services seems to be the public and the government’s concern, and the security of supply is only one mean to achieving it. Stemming from science, technology and society studies, this discussion paper suggests that applying a multi-level socio-technical and user-oriented perspectives which focus on the energy services and considers also psychological, social and cultural aspects of energy consumption, could reveal new and overlooked actors, roles, means and strategies that may provide and contribute to energy services security.Keywords: energy security, energy services, socio-technical systems


2011 ◽  
Vol 347-353 ◽  
pp. 1387-1390 ◽  
Author(s):  
Xiao Jia Gao

Construction industry is an important tache and constitute in low-carbon city and emission reduction. Under the background of China’s low-carbon city, this paper has summed up the features of green residential buildings, and proposed the effective routes for the construction green residential buildings during life cycle, finally some suggestions were given from energy system, technologies and the point of government function.


Nuclear Law ◽  
2022 ◽  
pp. 85-140
Author(s):  
Timothy Stone

AbstractTo achieve Net Zero, natural gas, gasoline, diesel, and fuel oils must be replaced with another source. However, most of the current low-carbon energy sources will also need to be replaced as almost none have more than about 25 years remaining of useful life. The pace and scale of the needed change is unprecedented: almost the whole of the world’s primary energy supply must be replaced. The (re)development of the entire energy system is inherently a sovereign risk and it can only be governments who set national energy policy. There is no doubt that markets will continue to play a part in future energy systems, but at the top level, the pace and scale of change to achieve Net Zero is simply far too fast for markets to adapt properly. This chapter is a call to action to the national policy makers and presents this challenge as an opportunity for creating higher-quality jobs and potentially highly attractive and long-dated investment options. The chapter also outlines some risks, including political indecisiveness and policy volatility as potential impediments to making the most of this opportunity and achieving the Net Zero.


2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Li ◽  
Fan Zhang ◽  
Xiyuan Ma ◽  
Senjing Yao ◽  
Zhuolin Zhong ◽  
...  

The park integrated energy system (PIES) plays an important role in realizing sustainable energy development and carbon neutral. Furthermore, its optimization dispatch can improve the energy utilization efficiency and reduce energy systems operation cost. However, the randomness and volatility of renewable energy and the instability of load all bring challenges to its optimal operation. An optimal dispatch framework of PIES is proposed, which constructs the operation models under three different time scales, including day-ahead, intra-day and real-time. Demand response is also divided into three levels considering its response characteristics and cost composition under different time scales. The example analysis shows that the multi-time scale optimization dispatch model can not only meet the supply and demand balance of PIES, diminish the fluctuation of renewable energy and flatten load curves, but also reduce the operation cost and improve the reliability of energy systems.


2019 ◽  
Vol 3 (1-2) ◽  
pp. 59-72 ◽  
Author(s):  
Wang Zhongying ◽  
Kaare Sandholt

Abstract China’s strong economic growth over the past 40 years has been followed by similar strong growth in energy consumption, based on coal. A continuation of this development is not sustainable, and China has set new ambitious targets for future energy systems development, which in reality calls for a genuine energy revolution in order to build a clean, low-carbon, safe, and efficient energy system towards 2035 and 2050. This paper looks at the mechanisms behind the energy transition, analysis of a concrete case for a sustainable energy system in 2050, and points to policy measures and instruments to ensure the necessary progress in this energy transition. The case shows that it is possible for China in 2050 to reduce CO2 emission to one-third of today’s emission while at the same time maintaining economic growth, improving security of supply, air quality, and economic efficiency of the power system.


2013 ◽  
Vol 58 (03) ◽  
pp. 1350021 ◽  
Author(s):  
YAN XIA ◽  
YING FAN ◽  
JIE WU

Achieving China's carbon reduction targets for 2020 necessitates the consideration of integrated production chains (PCs) given that competition between sectors has been transformed into competition between PCs. This paper establishes an extended input–output (IO) model that calculates the cost multiplier transmission effect of emission reduction in low-carbon production chains (LCPCs). Empirical results show that in relation to PCs, the electricity power industry and urban residents are the key policy points in adjusting China's industrial structure. This paper suggests that policymakers consider the cost multiplier transmission effect imposed by upstream sectors to downstream industries.


Sign in / Sign up

Export Citation Format

Share Document