scholarly journals Sediment yield, detachment, and runoff from soil under selected parent materials in Southeastern Nigeria.

2019 ◽  
pp. 35-44
Author(s):  
Agim L.C. ◽  
Igwe C.A.

Soil degradation due to water erosion among other causes has been a major problem in southeastern Nigeria, therefore a study was conducted to determine sediment yield, detachment, and runoff from soil under selected parent material in southeastern Nigeria. The objective was to characterize the selected soils in terms of their physical and chemical parameters, carry out rainfall simulation, and to establish some relationships that exist among studied parameters with selected soil properties. Soil samples were collected in three replicates from twenty locations, 5 location each from 4 geologic formations namely Asu River Group, Bende Ameki Group, Coastal Plain Sand and False bedded Sandstone at a depth of 0 – 20 cm using soil auger. Standard laboratory procedures were followed for samples for routine analyses while the rest was subjected to rainfall simulation at an intensity of 190 mm/hr for a period of 30 minutes under dry and wet conditions of the soils. Result showed that significant P<0.05) differences among studied parameters. Sediment yield under wet and dry states ranged from 0.56 - 3.95 kg m-2 hr-1 and from 0.80 - 4.97 kg m-2hr-1. The highest sediment yield under both conditions was recorded at Ishiagu, Bende, Obinze and Okigwe from ARG, BAG, CPS and FBS derived parent materials, respectively. Detachment under both conditions ranged from 0.04 - 0.13 kg m-2hr-1 and from 0.03 - 0.21 kg m-2 hr- . Similarly, runoff ranged from 79.80 - 125.30 mm and 28.00 – 106.90 mm under wet and dry states. Result also indicated a negative relationship between clay fraction and sediment yield (r= - 0.62) under dry and ( r= - 0.27) under wet condition. Conclusively, the study noted that rainfall has great impact on studied soils as higher values of sediment yield and detachment were noted mostly under dry than in wet conditions.

2006 ◽  
Vol 86 (1) ◽  
pp. 61-76 ◽  
Author(s):  
N. E. García Calderón ◽  
A. Ibáñez Huerta ◽  
G. Alvarez Arteaga ◽  
P. V. Krasilnikov ◽  
A. Hernández Jiménez

Agroforestry is a new practice of sustainable soil use in the mountainous Sierra Sur de Oaxaca area of Mexico. Coffee is also a common cash crop grown in the region. The objective of this study was to investigate the pedodiversity in the area. Soil development is very complex, and is influenced by slope parameters and parent materials. Several soil groups are found in the area investigated: Alisols, Umbrisols, and Cambisols. Morphology, chemical properties, and mineralogical composition of the clay fraction of these soils were studied. The soils vary in the extent of weathering, morphology, and chemical properties, which are important to farming in the area. Most of the soils have heterogeneous parent material. The distribution of major soil types of the area is related to mass movement along the slopes, both past and present. The studied soils represent a chronosequence from unleached and unweathered Cambisols to Alisols, characterized by strong clay illuviation and dominance of kaolinite and gibbsite in clay fraction. A mosaic of landslides and gullies of various ages, formed by catastrophic events such as earthquakes and hurricanes, form the pedodiversity of the area studied. Key words: Landslides, chronosequence, pedodiversity, Cambisols, Umbrisols, Alisols


Agro-Science ◽  
2021 ◽  
Vol 20 (3) ◽  
pp. 104-109
Author(s):  
C.M. Ahukaemere ◽  
E.U. Onweremadu ◽  
F.O.R. Akamigbo

Land use and parent materials influence behaviour of soils including responsiveness to erosion forces. The study investigated some soil properties related to erodibility in Abia and Imo States of Nigeria. Soil sampling was guided by geology and land use type. Random sampling technique was adopted in field studies. Two parent materials and three land use types were chosen for the study. In each parent material, three land use types were studied and in each land use, three soil profiles were sunk, described, and sampled using FAO procedure. Soil samples were subjected to laboratory analyses and data generated were analyzed using descriptive and inferential statistical tools. Results showed that sand sized particles ranged from 533.10 to 778.80 g kg–1 and this distribution differed significantly between parent materials. Silt content ranged from 141.70 g kg–1 in soils derived from false-bedded sandstone to 202.20 g kg–1 in shale-derived soils. Clay-sized particles ranged from 77.30 g kg–1 in soils derived from false-bedded sandstone to 264.70 g kg–1 in shale-derived soils, respectively. Water-stable aggregate ranged from 19.38% in false-bedded sandstone to 29.23% in shale-derived soils. The DR (dispersion ratio) mean values ranged between 4.26 in shale and 8.46 in false-bedded sandstone, while the CDI (clay dispersion index) mean values ranged between 2.17 in shale and 8.41 in false-bedded sandstone, respectively. The forest soils had the lowest values of both DR (6.89) and CDI (6.40) for soils of the false-bedded sandstone, 3.85 and 1.59 for those derived from shale. The clay flocculation index (CFI) had mean of 2.16 in false-bedded sandstone and 7.83 in shale. In soils of the varying land use types, the mean soil pH (H2O) ranged from 4.28 to 4.64 in soils derived from false-bedded sandstone and 4.27-5.57 in those derived from Shale. From the results, parent material and land use influenced soil erodibility parameters (water-stable aggregates, mean-weight diameter, DR, CDI, and CFI) and other soil properties such as organic carbon, bulk density, and moisture content.


1999 ◽  
Vol 79 (4) ◽  
pp. 571-592 ◽  
Author(s):  
J. M. Arocena ◽  
P. Sanborn

Soil properties in central and northeastern British Columbia are strongly influenced by parent materials because of geologically young till, glaciolacustrine, and glaciofluvial deposits. We examined pedogenesis on various parent materials to support studies of long-term forest productivity. We sampled nine pedons developed on till (Bobtail, Lucille Mountain, Skulow Lake, Log Lake, Topley, and Kiskatinaw), glaciofluvial (Bowron), and glaciolacustrine (Aleza Lake 1, 2) deposits. The Skulow Lake pedon is distinctive in the occurrence of talc, while the Lucille Mountain pedon has the only clay fraction in which kaolinite is absent. Other pedons on till contain mica, kaolinite, chlorite, smectite, and vermiculite. The Bowron pedon has mica, kaolinite, and chlorite, while the Aleza Lake pedons have mica, kaolinite, chlorite, and 2:1 expanding minerals. In pedons with low amount of 2:1 expanding clays in the C horizon, mica and chlorite appear to degrade into 2:1 expanding clays, while in pedons with C horizons containing 2:1 expanding clays, mica and chlorite seem stable and the formation of hydroxy-interlayered clays is the predominant process. Podzolization and lessivage are major pedogenic processes, while redoximorphic processes are observed in some pedons with illuvial Bt horizons. Significant soil compaction hazards are presented by the medium and fine soil surface textures. Although clay-rich Bt horizons may benefit soil nutrient regimes, conservation of nutrient-rich forest floors is important, given the low S contents in mineral soils. High contents of feldspars in these soils provide a large reserve of nutrients such as Ca and K. Key words: Clay minerals, parent material, podzolization, lessivage


1984 ◽  
Vol 64 (4) ◽  
pp. 481-494 ◽  
Author(s):  
A. R. MERMUT ◽  
K. GHEBRE-EGZIABHIER ◽  
R. J. St. ARNAUD

Detailed mineralogy and chemistry of the clay fraction of five glacio-lacustrine deposits and of one Cretaceous marine shale (Ashville) were studied. Fine clay separates (< 0.2 μm) of the five parent materials were predominantly smectite with an average chemical composition:[Formula: see text]X-ray diffraction, dehydration, infrared, and chemical analyses, and the Greene-Kelly test showed that the smectite was an iron rich montmorillonite. Similarities in the crystal structure of the five soil parent material clays suggest that they were likely transported from the same source. Despite the differences in percentage of clay minerals, similarities between chemical composition of the coarse and the fine clays is interpreted as an indication of close diagenetic relationships between the predominant smectite and soil mica. High silicate bound iron may have caused a distortion in the crystal lattice and a slightly favorable weathering condition of smectites. However, presence of high exchangeable and soluble magnesium in the soil complex is likely retarding the smectite alteration. Thus, weathering by elemental substitution may have been restricted to the smectite end member only. Key words: Swelling clay soils, iron montmorillonite, chemical composition of smectites, dehydration of smectites


2018 ◽  
Vol 15 (1) ◽  
pp. 83
Author(s):  
Hikmatullah Hikmatullah ◽  
Kesumo Nugroho

Tropical Volcanic Soils from Flores Island, Indonesia (Hikmatullah and K Nugroho): Soils that are developed in tropical region with volcanic parent materials have many unique properties, and high potential for agricultural use. The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia, and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed from andesitic volcanic materials from Flores Island were studied to determine their properties. They were compared in their physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristic different.  The soils were developed under humid tropical climate with ustic to udic soil moisture regimes with different annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed different properties compared to the soils derived from volcanic tuff, even though they were developed from th e same intermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences. The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, and very friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cation exchange capacity (CEC). The soils in western region have higher clay content and showing more developed than of the eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order. The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherable mineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soils were classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands.


2020 ◽  
Vol 71 (1) ◽  
pp. 192-200
Author(s):  
Anca-Luiza Stanila ◽  
Catalin Cristian Simota ◽  
Mihail Dumitru

Highlighting the sandy soil of Oltenia Plain calls for a better knowledge of their variability their correlation with major natural factors from each physical geography. Pedogenetic processes specific sandy soils are strongly influenced by nature parent material. This leads, on the one hand, climate aridity of the soil due to strong heating and accumulation of small water reserves, consequences emphasizing the moisture deficit in the development of the vegetation and favoring weak deflation, and on the other hand, an increase in mineralization organic matter. Relief under wind characteristic sandy land, soil formation and distribution has some particularly of flat land with the land formed on the loess. The dune ridges are less evolved soils, profile underdeveloped and poorly supplied with nutrients compared to those on the slopes of the dunes and the interdune, whose physical and chemical properties are more favorable to plant growth.Both Romanati Plain and the Blahnita (Mehedinti) Plain and Bailesti Plain, sand wind shaped covering a finer material, loamy sand and even loess (containing up to 26% clay), also rippled with negative effects in terms of overall drainage. Depending on the pedogenetic physical and geographical factors that have contributed to soil cover, in the researched were identified following classes of soils: protisols, cernisols, cambisols, luvisols, hidrisols and antrosols.Obtaining appropriate agricultural production requires some land improvement works (especially fitting for irrigation) and agropedoameliorative works. Particular attention should be paid to preventing and combating wind erosion.


1998 ◽  
Vol 78 (4) ◽  
pp. 699-706 ◽  
Author(s):  
S. I. Gill ◽  
M. A. Naeth ◽  
D. S. Chanasyk ◽  
V. S. Baron

Currently, there is interest in Western Canada in extending the grazing season using perennial and annual forages. Of greatest concern is the environmental sustainability of these grazing systems, with emphasis on their ability to withstand erosion. A study to examine the runoff and sediment yields of annual and perennial forages in central Alberta was initiated in 1994. Runoff and sediment yield were quantified under snowmelt and rainfall events for two seasons. Rainfall simulation was used to further examine runoff under growing season conditions. Four forage treatments (two annuals: triticale and a barley/triticale mixture and two perennials: smooth bromegrass and meadow bromegrass) and three grazing intensities (light, medium and heavy) were studied, each replicated four times. Total annual runoff was dominated by snowmelt. Generally runoff volumes, sediment yields, sediment ratios and runoff coefficients were all low. Bare ground increased with increasing grazing intensity and was significantly greater in annuals than perennials for all grazing intensities. Litter biomass decreased with increasing grazing intensity and was generally similar in all species for both years at heavy and medium grazing intensities. Results from the rainfall simulation corroborated those under natural rainfall conditions and generally indicated the sustainability of these grazing systems at this site. Key words: Forages, soil erosion, sustainability, rainfall simulation


1997 ◽  
Vol 77 (2) ◽  
pp. 295-307 ◽  
Author(s):  
T. A. Okusami ◽  
R. H. Rust ◽  
A. O. Alao

Representative profiles of the Owena, Egbeda, Alagba, and Balogun series were studied. The Owena soil is formed in amphibolite whereas Egbeda and Balogun soils are formed in biotite gneiss derived parent materials. The Alagba soil is formed in sandstone parent rock. The main objectives were to characterize the soils and their clay fraction, and to classify and interpret soil properties for agricultural land use. Most soils exhibit 2.5 YR hues in subsurface horizons. A pedon formed in biotite gneiss has the highest dithionite Fe content and Fed/clay ratio. The relationships between clay content and Fed values vary according to parent material origin and, therefore, would have to be interpreted differently for soil weathering processes. Clay coatings were noticeable in some soil horizons of all pedons studied. Soils are generally medium to slightly acid with sandstone-derived soils being the most acid. The clay mineral suite in all soils is dominated by kaolinite with traces of 2:1 and 2:2 clay minerals, goethite, hematite, anatase, maghemite, and rutile. In addition, some soils contain trace amounts of gibbsite. Kandic horizons have been identified in all soils. The low charge properties of the soils reflect the intensely weathered clay mineral suite. The base status is probably influenced by the cropping system and therefore may tend to unnecessarily differentiate highly weathered soils at the order level. The Egbeda and Balogun series were classified as Rhodic Kandiudults, clayey-skeletal, oxidic and Rhodic Kandiudalfs, clayey-skeletal, oxidic, respectively. Others, Owena, and Alagba series, were classified as Typic Kanhaplohumults, clayey, oxidic and Rhodic Kanhaplustults, fine loamy or clayey, oxidic, respectively. In the FAO-Unesco legend, all soils become Rhodic Ferralsols. In addition, the Owena (with its nitic properties) is further classified as niti-rhodic Ferralsol. The two classification systems are at variance for highly weathered (variable charge property) soils and this difference will definitely influence management decisions depending on which system is used at any particular time. Soil attributes favorable for agricultural use include thick sola and favorable structures. Chemical properties suggest minimal fixation of phosphorus. Key words: Dithionite Fe, kandic, oxidic, variable charge, ferralic, exchangeable Al


Sign in / Sign up

Export Citation Format

Share Document