scholarly journals SKRINING SENYAWA INHIBITOR H2 DARI KAYU MANIS (Cinnamomum verum J.Presl)

2021 ◽  
Vol 6 (2) ◽  
pp. 176-185
Author(s):  
Samsul Hadi ◽  
Diah Aulia Rosanti ◽  
Desiya Ramayanti Azhara ◽  
Kunti Nastiti ◽  

Digestive tract disorders, especially gastric disorders, are often experienced by people. One drug to treat this disorder has a mechanism of blocking the H2 receptor. This research was conducted to find compounds from C.verum which have the stability of bind to H2 receptors. The method used is protein modeling with swiss-model, docking with PLANTS (CHEMPLP) and activity prediction. The test results obtained that the docking score was ?- amorphene (-65,79), ?-bergamotene (-65,48), ?-copaene (-66,62), ?-cubebene (-66,46), Cadinene (-64 , 79), Camphor (-52.15), Caryophyllene (-62.61), Cinnamaldehyde (-68.17), Epicatechin (-80.43), Ergosterol (-85.24), Eugenol (-67.35), Hydrocinnamaldehyde (-65,53), Quercetin (-74,38), Protocatechuic acid (-71,49), Stigmasterol (-88,88), 4- (2,3-dihydro-3- (hydroxymethyl) - 5- (3-hydroxypropyl) -7- (methoxy) benzofuranyl] -2-methoxyphenyl (-85,29). Combined with the probability activity of compounds that have the potential to be further developed are Epicatechin and urolignoside.

1996 ◽  
Vol 320 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Yasushi FUKUSHIMA ◽  
Tomoichiro ASANO ◽  
Hideki KATAGIRI ◽  
Makoto AIHARA ◽  
Toshihito SAITOH ◽  
...  

The histamine H2 receptor is a member of the family of G-protein-coupled receptors and is linked to the activation of adenylate cyclase phospholipase C (PLC). In this study we examined the effects of protein kinase C (PKC) activation in Chinese hamster ovary (CHO) cells stably expressing canine histamine H2 receptors. Pretreatment with 100 nM phorbol 12-myristate 13-acetate at 37 °C for 15 min led to significant potentiation of histamine-dependent and forskolin-dependent cAMP production, whereas the biologically inactive phorbol ester, 4α-phorbol 12,13-didecanoate, was without effect. These potentiating effects were abolished by preincubation with 0.5 µM bisindolylmaleimide, a PKC inhibitor. Thus the activation of PKCs seems to be involved in the potentiation of cAMP production by acting on a post-receptor mechanism. Preincubation of a CHO cell line, CHO-H2R, with 10 µM histamine for 30 min had two effects. Maximal histamine-dependent cAMP production and forskolin-dependent cAMP production were potentiated by 36% and 105.2% respectively. The other effect was a desensitization of the histamine-dependent adenylate cyclase response as demonstrated by a three-fold increase in EC50. Administration of 0.5 µM bisindolylmaleimide before preincubation of CHO-H2R with 10 µM histamine did not alter the desensitizing effect on cAMP production, but did abolish the sensitizing effect. Preincubation of CHO-H2R cells with 10 nM histamine resulted in moderate potentiation, which was also abolished by bisindolylmaleimide, but not in desensitization of the histamine-dependent cAMP production. Thus these results suggest that preincubation with histamine had a sensitizing effect on cAMP production mediated by PLC and PKC activation, as well as a desensitizing effect on the H2 receptor. The former effect is dependent on the intensity of PLC and PKC signals delivered by H2 receptors. The latter effect requires a higher concentration of histamine.


1980 ◽  
Vol 238 (1) ◽  
pp. G50-G56
Author(s):  
S. J. Konturek ◽  
R. Siebers

Studies were conducted in conscious dogs implanted with monopolar silver electrodes along the small intestine to determine whether the intestinal motility response to histamine is mediated by H1-receptors alone or whether H2-receptors are also involved in the response. Histamine infusion alone induced a marked increase in the appearance rate and the propagation velocity of the interdigestive myoelectric complexes (IMC). This effect was reproduced by the administration of the selective H1-receptor agonist, 2-methylhistamine, and abolished by the H1-receptor antagonist, tripelennamine. Tripelennamine alone decreased the frequency of occurrence of the IMC in fasted animals and reduced significantly the spike potential activity of the small bowel in fed dogs. Neither the H2-receptor agonist, dimaprit, nor the H2-receptor antagonist, metiamide, had any influence on the motility patterns in fasted or fed animals. We conclude that histamine influences the patterns of small bowel motility via stimulation of H1-receptors but its physiological role in modulating intestinal motility remains to be determined.


Author(s):  
H. R. Born

This paper presents an overview of the development of a reliable bearing system for a new line of small turbochargers where the bearing system has to be compatible with a new compressor and turbine design. The first part demonstrates how the increased weight of the turbine, due to a 40 % increase in flow capacity, influences the dynamic stability of the rotor-bearing system. The second part shows how stability can be improved by optimizing important floating ring parameters and by applying different bearing designs, such as profiled bore bearings supported on squeeze film dampers. Test results and stability analyses are included as well as the criteria which led to the decision to choose a squeeze film backed symmetrical 3-lobe bearing for this new turbocharger design.


2010 ◽  
Vol 163-167 ◽  
pp. 3297-3300 ◽  
Author(s):  
Jia Wei Shi ◽  
Hong Zhu ◽  
Zhi Shen Wu ◽  
Gang Wu

Coupon tests were conducted to investigate the mechanical characteristics of basalt FRP (BFRP) sheet, basalt-carbon hybrid FRP sheets and the corresponding epoxy rein under the effect of freeze-thaw cycling. FRP sheets and epoxy rein coupons were subjected to up to 200 and 250 freeze-thaw cycles respectively. Test parameters included the number of freeze-thaw cycles and the types of FRP composites. Test results show that (1) BFRP sheet perform better than CFRP or GFRP sheets under high freeze-thaw cycles; (2) exposed hybrid FRP sheets not only show very little loss in mechanical properties, but also contribute to the stability of test data; (3) mechanical properties of rein epoxy decrease significantly with increasing freeze-thaw cycles.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4267
Author(s):  
Qi Ye ◽  
Yingchun Gong ◽  
Haiqing Ren ◽  
Cheng Guan ◽  
Guofang Wu ◽  
...  

Cross-laminated timber (CLT) elements are becoming increasingly popular in multi-storey timber-based structures, which have long been built in many different countries. Various challenges are connected with constructions of this type. One such challenge is that of stabilizing the structure against vertical loads. However, the calculations of the stability bearing capacity of the CLT members in axial compression in the structural design remains unsolved in China. This study aims to determine the stability bearing capacity of the CLT members in axial compression and to propose the calculation method of the stability coefficient. First, the stability coefficient calculation theories in different national standards were analyzed, and then the stability bearing capacity of CLT elements with four slenderness ratios was investigated. Finally, based on the stability coefficient calculation formulae in the GB 50005-2017 standard and the regression method, the calculation method of the stability coefficient for CLT elements was proposed, and the values of the material parameters were determined. The result shows that the average deviation between fitting curve and calculated results of European and American standard is 5.43% and 3.73%, respectively, and the average deviation between the fitting curve and the actual test results was 8.15%. The stability coefficients calculation formulae could be used to predict the stability coefficients of CLT specimens with different slenderness ratios well.


2015 ◽  
Vol 14 (2) ◽  
pp. 1
Author(s):  
Tanti Ardiyati ◽  
Nathaniel P. Dugos ◽  
Susan A. Roces ◽  
Masaaki Suzuki ◽  
Kusnanto Kusnanto

The stability and emission characteristics of diesel-ethanol-coconut methyl ester (CME) blends were studied to determine the most suitable fuel blends to be applied in diesel engines. This is done in order to assess the potential of the blends as a substitute for commercially available diesel fuel used in diesel engine. The stability results of the blends using 100% and 99.5% ethanol purity showed that the fuel blends containing ethanol up to 10% and CME of 5% and greater exhibited high mutual solubility at any temperature range and were resistant to microbial growths after 3 months storage. Engine operations at low speed especially at idle-no load and using a bigger size engine lead to a minimum ignition delay and result in lower fuel consumption rate. The emission test results with the new- blended fuels showed a reduction in CO2 and increasing percentage by volume of CO2 compared to commercially available diesel. The blends could deliver an efficient combustion and could run efficiently since production of the CO2 gases is higher than that of CO. The blends of 80% diesel, 5% ethanol, 10% CME; and 80% diesel, 10% ethanol, 10% CME could reduce the smoke opacity compared to commercially available diesel.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Binbin Pei ◽  
Haojun Xu ◽  
Yuan Xue

Current fight boundary of the envelope protection in icing conditions is usually defined by the critical values of state parameters; however, such method does not take the interrelationship of each parameter and the effect of the external disturbance into consideration. This paper proposes constructing the stability boundary of the aircraft in icing conditions through analyzing the region of attraction (ROA) around the equilibrium point. Nonlinear icing effect model is proposed according to existing wind tunnel test results. On this basis, the iced polynomial short period model can be deduced further to obtain the stability boundary under icing conditions using ROA analysis. Simulation results for a series of icing severity demonstrate that, regardless of the icing severity, the boundary of the calculated ROA can be treated as an estimation of the stability boundary around an equilibrium point. The proposed methodology is believed to be a promising way for ROA analysis and stability boundary construction of the aircraft in icing conditions, and it will provide theoretical support for multiple boundary protection of icing tolerant flight.


Author(s):  
RADITYA ISWANDANA ◽  
RICHA NURSELVIANA ◽  
SUTRIYO SUTRIYO

Objective: Gold nanoparticles (AuNPs) are highly useful for drug delivery, but their application is limited by their stability as they readily aggregate.This issue can be prevented by adding a stabilizing agent such as resveratrol (RSV), which is a polyphenol derived from plants, that is used to preventcancer. Therefore, we propose a novel method to prepare stable RSV-conjugated nanoparticles modified with polyethylene glycol (RSV-AuNP-PEG).Methods: In the first step, the Turkevich method was used to synthesize the AuNPs. Then, PEG was added as stabilizer agent and conjugated with RSV.The synthesized conjugates were characterized using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, particle sizeanalysis, and high-performance liquid chromatography.Results: The obtained RSV-AuNP-PEG had a particle size of 83.93 nm with a polydispersity index (PDI) of 0.562 and formed a translucent purple-redfluid in solution. The zeta potential was −22.9 mV, and the highest entrapment efficiency was 75.86±0.66%. For comparison, the RSV-AuNP solutionwas purple and turbid, the particle size was 51.97 nm with a PDI of 0.694, and the zeta potential was −24.6 mV. The stability test results showed thatthe storage stability of RSV-AuNP-PEG was better than that of AuNP-RSV. Further, the RSV-AuNP-PEG was shown to be most stable in 2% bovine serumalbumin (BSA) while the AuNP-RSV was most stable in 2% BSA in phosphate-buffered saline pH 7.4.Conclusion: These results show that modification of RSV-conjugated AuNPs with PEG effectively prevents their aggregation in storage, but only incertain mediums.


Sign in / Sign up

Export Citation Format

Share Document