scholarly journals Identification of Genes for Wheat Fungal Resistance Using Bioinformatics Techniques

2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmed E. Nassar ◽  
Khaled H. Mousa ◽  
Ahmed A. Madbouly ◽  
Shafik D. Ibrahim ◽  
Alsamman M. Alsamman

For the majority of world populations, wheat (Triticum aestivum L.) would be the first essential and economic cereal grain crop. Pests and pathogens in both rich and developing countries are constantly threatening wheat production and sustainable development. Multiple gene pathways were recorded to share an association with fungal pathogens with wheat biological resistance. Our aim to use such tools in order to detect and classify fungal resistance genes in wheat through sequence alignment, protein domain identification and phylogenetic analysis. In addition the introduction for restriction fragment length polymorphism (RFLP) for such genes in the new primer database. Approximately 138 sequences of DNA were recovered from the wheat genome by aligning 3845 anti-fungal amino acids through tblastn tool. The NCBI blastn online tool used to detect sequences with functional genes, where 92 genes have been detected. The total number of nucleotides was 48385, where the smallest DNA sequence have 302 bp and the longest contains 977 bp with an average length of 525.9 bp per sequence. The wheat chromosomes 3D, and 4B have the highest number of sequences (9) followed by chromosomes 3B (7) and 3A(6), where wheat genomes A, B and D have 30, 35 and 27 genes, respectively. Five different amino acids motifs have been revealed among studied wheat amino acid sequences. The gene annotation tools used to infer studied amino acid gene annotation. Amino acid sequences belongs to lectin, kinase, tyrosine-protein kinase (STK), thaumatin, and cysteine-rich repeats representing 2, 9, 8, 19, 23 genes respectively, in addition to 31 hypothetical genes. The proteins chemical content have been assessed through 16 different amino acid chemical and physical characteristics.

2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


Genome ◽  
1991 ◽  
Vol 34 (4) ◽  
pp. 644-651 ◽  
Author(s):  
Kenneth Koo ◽  
W. Dorsey Stuart

The gene product of the mtr locus of Neurospora crassa is required for the transport of neutral aliphatic and aromatic amino acids via the N system. We have previously cloned three cosmids containing Neurospora DNA that complement the mtr-6(r) mutant allele. The cloned DNAs were tightly linked to restriction fragment length polymorphisms that flank the mtr locus. A 2.9-kbp fragment from one cosmid was subcloned and found to complement the mtr-6(r) allele. Here we report the sequence of the fragment that hybridized to a poly(A)+ mRNA transcript of about 2300 nucleotides. We have identified an 845-bp open reading frame (ORF) having a 59-bp intron as the potential mtr ORF. S1 nuclease analysis of the transcript confirmed the transcript size and the presence of the intron. A second open reading frame was found upstream in the same reading frame as the mtr ORF and appears to be present in the mRNA transcript. The mtr ORF is predicted to encode a 261 amino acid polypeptide with a molecular mass of 28 613 Da. The proposed polypeptide exhibits six potential α-helical transmembrane domains with an average length of 23 amino acids, does not have a signal sequence, and contains amino acid sequence homologous to an RNA binding motif.Key words: sequence, membranes, ribonucleoprotein.


1973 ◽  
Vol 131 (3) ◽  
pp. 485-498 ◽  
Author(s):  
R. P. Ambler ◽  
Margaret Wynn

The amino acid sequences of the cytochromes c-551 from three species of Pseudomonas have been determined. Each resembles the protein from Pseudomonas strain P6009 (now known to be Pseudomonas aeruginosa, not Pseudomonas fluorescens) in containing 82 amino acids in a single peptide chain, with a haem group covalently attached to cysteine residues 12 and 15. In all four sequences 43 residues are identical. Although by bacteriological criteria the organisms are closely related, the differences between pairs of sequences range from 22% to 39%. These values should be compared with the differences in the sequence of mitochondrial cytochrome c between mammals and amphibians (about 18%) or between mammals and insects (about 33%). Detailed evidence for the amino acid sequences of the proteins has been deposited as Supplementary Publication SUP 50015 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973), 131, 5.


2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


1977 ◽  
Vol 162 (2) ◽  
pp. 411-421 ◽  
Author(s):  
S J Yeaman ◽  
P Cohen ◽  
D C Watson ◽  
G H Dixon

The known amino acid sequences at the two sites on phosphorylase kinase that are phosphorylated by cyclic AMP-dependent protein kinase were extended. The sequences of 42 amino acids around the phosphorylation site on the alpha-subunit and of 14 amino acids around the phosphorylation site on the beta-subunit were shown to be: alpha-subunit Phe-Arg-Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser-Glx-Pro-Asx-Gly-Gly-His-Ser-Leu-Gly-Ala-Asp-Leu-Met-Ser-Pro-Ser-Phe-Leu-Ser-Pro-Gly-Thr-Ser-Val-Phe(Ser,Pro,Gly)His-Thr-Ser-Lys; beta-subunit, Ala-Arg-Thr-Lys-Arg-Ser-Gly-Ser(P)-VALIle-Tyr-Glu-Pro-Leu-Lys. The sites on histone H2B which are phosphorylated by cyclic AMP-dependent protein kinase in vitro were identified as serine-36 and serine-32. The amino acid sequence in this region is: Lys-Lys-Arg-Lys-Arg-Ser32(P)-Arg-Lys-Glu-Ser36(P)-Tyr-Ser-Val-Tyr-Val- [Iwai, K., Ishikawa, K. & Hayashi, H. (1970) Nature (London) 226, 1056-1058]. Serine-36 was phosphorylated at 50% of the rate at which the beta-subunit of phosphorylase kinase was phosphorylated, and it was phosphorylated 6-7-fold more rapidly than was serine-32. The amino acid sequences when compared with those at the phosphorylation sites of other physiological substrates suggest that the presence of two adjacent basic amino acids on the N-terminal side of the susceptible serine residue may be critical for specific substrate recognition in vivo.


1963 ◽  
Vol 18 (12) ◽  
pp. 1032-1049 ◽  
Author(s):  
B. Wittmann-Liebold ◽  
H. G. Wittmann

The amino acid sequence of dahlemense, a naturally occuring strain of tobacco mosaic virus, has been determined and compared with that of the strain vulgare (Fig. 7). In this communication the experimental details are given for the elucidation of the amino acid sequences within two tryptic peptides with 65 amino acids.


2011 ◽  
Vol 6 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Malay Choudhury ◽  
Takahiro Oku ◽  
Shoji Yamada ◽  
Masaharu Komatsu ◽  
Keita Kudoh ◽  
...  

AbstractApolipoproteins such as apolipoprotein (apo) A-I, apoA-IV, and apoE are lipid binding proteins synthesized mainly in the liver and the intestine and play an important role in the transfer of exogenous or endogenous lipids through the circulatory system. To investigate the mechanism of lipid transport in fish, we have isolated some novel genes of the apoA-I family, apoIA-I (apoA-I isoform) 1–11, from Japanese eel by PCR amplification. Some of the isolated genes of apoIA-I corresponded to 28kDa-1 cDNAs which had already been deposited into the database and encoded an apolipoprotein with molecular weight of 28 kDa in the LDL, whereas others seemed to be novel genes. The structural organization of all apoIA-Is consisted of four exons separated by three introns. ApoIA-I10 had a total length of 3232 bp, whereas other genes except for apoIA-I9 ranged from 1280 to 1441 bp. The sequences of apoIA-Is at the exon-intron junctions were mostly consistent with the consensus sequence (GT/AG) at exon-intron boundaries, whereas the sequences of 3′ splice acceptor in intron 1 of apoIA-I1-7 were (AC) but not (AG). The deduced amino acid sequences of all apoIA-Is contained a putative signal peptide and a propeptide of 17 and 5 amino acid residues, respectively. The mature proteins of apoIA-I1-3, 7, and 8 consisted of 237 amino acids, whereas those of apoIA-I4-6 consisted of 239 amino acids. The mature apoIA-I10 sequence showed 65% identity to amino acid sequence of apoIA-I11 which was associated with an apolipoprotein with molecular weight of 23 kDa in the VLDL. All these mature apoIA-I sequences satisfied the common structural features depicted for the exchangeable apolipoproteins such as apoA-I, apoA-IV, and apoE but apoIA-I11 lacked internal repeats 7, 8, and 9 when compared with other members of apoA-I family. Phylogenetic analysis showed that these novel apoIA-Is isolated from Japanese eel were much closer to apoA-I than apoA-IV and apoE, suggesting new members of the apoA-I family.


2002 ◽  
Vol 184 (8) ◽  
pp. 2225-2234 ◽  
Author(s):  
Jason P. Folster ◽  
Terry D. Connell

ABSTRACT ChiA, an 88-kDa endochitinase encoded by the chiA gene of the gram-negative enteropathogen Vibrio cholerae, is secreted via the eps-encoded main terminal branch of the general secretory pathway (GSP), a mechanism which also transports cholera toxin. To localize the extracellular transport signal of ChiA that initiates transport of the protein through the GSP, a chimera comprised of ChiA fused at the N terminus with the maltose-binding protein (MalE) of Escherichia coli and fused at the C terminus with a 13-amino-acid epitope tag (E-tag) was expressed in strain 569B(chiA::Kanr), a chiA-deficient but secretion-competent mutant of V. cholerae. Fractionation studies revealed that blockage of the natural N terminus and C terminus of ChiA did not prevent secretion of the MalE-ChiA-E-tag chimera. To locate the amino acid sequences which encoded the transport signal, a series of truncations of ChiA were engineered. Secretion of the mutant polypeptides was curtailed only when ChiA was deleted from the N terminus beyond amino acid position 75 or from the C terminus beyond amino acid 555. A mutant ChiA comprised of only those amino acids was secreted by wild-type V. cholerae but not by an epsD mutant, establishing that amino acids 75 to 555 independently harbored sufficient structural information to promote secretion by the GSP of V. cholerae. Cys77 and Cys537, two cysteines located just within the termini of ChiA(75-555), were not required for secretion, indicating that those residues were not essential for maintaining the functional activity of the ChiA extracellular transport signal.


Sign in / Sign up

Export Citation Format

Share Document