2014 ◽  
Vol 611 ◽  
pp. 490-495
Author(s):  
Martin Schrötter ◽  
Martin Hagara ◽  
Matúš Kalina

The aim of this article is to present the influence of stochastic pattern on results accuracy of digital image correlation method in plastic areas. The various types of stochastic patterns were applied on testing specimens which were then tensioned. There was correlated the intensity of black and white color (denoted as grey value) dispersed on a specimen, then the mean value of estimated error for unloaded state as well as state of highest measured deformation and finally the amount of non-correlated facets. Also the maximal deformation of specimens was compared by which the damage of stochastic pattern emerged.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Mostafa A. Ismail ◽  
Yasser E. Ibrahim

Local measurement of deformations of a soil specimen has become inevitable for accurate determination of soil stiffness in triaxial tests. Although there are now many devices that can be used to perform this task, each has its own advantages and limitations that render development of new devices with better desirable features. This paper presents an innovative device called spring deformation gauge (SDG) that has many advantages over many of the existing devices and can be readily manufactured in both research and commercial laboratories. The device is based on using a highly flexible, yet very strong metal strip of spring steel secured between two stiff, stainless steel L-shaped legs; the spring strip is provided with four strain gauges. With this arrangement, local deformation of a specimen is transferred into significant bending in the metal strip and elongation or shortening of the strain gauges. In addition to being very cost effective, the SDG is characterized by the ability to control both range and resolution of measured deformation, its linear output, and a clever pinning mechanism that protects it from being damaged when it goes out of range. Success of the SDG was demonstrated in a true K0 test on carbonate sand.


2016 ◽  
Vol 8 (1) ◽  
pp. 514-522 ◽  
Author(s):  
Salvatore Gambino

AbstractOn the 9th of January 2001 a seismic swarm on the southeastern flank of Mt. Etna at 3.5 km beside sea level (b.s.l.), caused co-seismic variations on short and long baseline tiltmeters of the Mt. Etna permanent tilt network.Taking account of the geometry and mechanism of the active tectonic structure obtained by seismological studies, the theoretical tilt linked to the faulting source was calculated at multiple different recording stations. It was found that the amount of measured deformation exceeded that which was generated seismically, indicating that much of the deformation along the fault was aseismic.The 9 January 2001 episode represents a shear response to a local stress caused by a volcanic source that acted in the period preceding the 2001 eruption. Tilt data also suggest a marked slip of 70-140 cm along the fault, probably due to the presence of fluids.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hyeonggil Choi ◽  
Bongsuk Cho

The creep phenomenon of hardening cement paste mixed with an expansive additive was modeled by considering the creep performance of hydration products of cement and expansive additive. A new composite model that is appropriate for particle conditions is proposed by considering the balance of the hydration products of cement and expansive additive and the stress redistribution phenomenon of hydration products newly generated by the progress of hydration. The creep of mortar and concrete mixed with the expansive additive was evaluated using a composite model of the paste and aggregate. Under the assumption that the modeled creep deformation is proportional to the stress and the gel volume of the hydration products, which allows the law of superposition to be applied, the distribution stress was predicted by applying the step-by-step method at each time increment. By predicting the maximum tensile stress applied to an inner steel ring through a creep analysis based on the measured deformation of the inner steel ring, it is possible to predict the stress progression with age to some degree.


2014 ◽  
Vol 627 ◽  
pp. 141-144 ◽  
Author(s):  
Jan Poduška ◽  
Jaroslav Kučera ◽  
Pavel Hutař ◽  
Martin Ševčík ◽  
J. Křivánek ◽  
...  

As a result of the production process, there are axial and tangential residual stresses present in pressure pipes made of polymer materials such as polyethylene or polypropylene. The residual stress magnitude and distribution have a significant influence on the pipe lifetime. In this contribution the results from experiments focused on determining the tangential residual stress distribution in the walls of polypropylene pipes of different dimensions are compared. The experimental method used involves measuring the deformation of ring shaped specimens that were slit in the axial direction. Measured deformation of the ring specimen is a result of the tangential and axial stress superposition. However, the effect of the axial residual stress depends on the specimen axial dimension and tangential residual stress estimated basing on experimental data should be corrected according to axial dimension of the specimen used. The correction suggested in this article is determined based on three-dimensional FEM simulations of the experiment.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Rui Feng ◽  
Yun-Long He ◽  
Xue-Xing Cao

The time-dependent behaviour of high rockfill dams is complex and not easy to accurately predict. Many discrepancies were revealed by the comparison of the observed deformation histories of different dams, and the deformation of some high rockfill dams did not correspond to the general deformation law. Field monitoring is therefore an effective method for understanding complex dam deformation behaviour. In this paper, actual measured deformation data resulting from continuous monitoring of the Maoergai and Qiaoqi dams are analysed. These two dams have similar heights, crest lengths, and alluvium overburden thicknesses. Our aim is to explain the actual deformation histories on the basis of the mechanical behaviours of these dams in order to warn engineers about potential problems that cannot be predicted. The results indicate that the deformation patterns of the two dams are completely different. The dam construction and water impoundment schedule is the major reason for the different horizontal displacement patterns. The reservoir filling rates and rainfall are the main reasons for the different settlement patterns. The case histories are useful for understanding the wide range of possible postconstruction deformation in a dam.


Author(s):  
Jana Labudková ◽  
Radim Čajka

Abstract The purpose of this paper is to compare the measured subsidence of the foundation in experiments and subsidence obtained from FEM calculations. When using 3D elements for creation of a 3D model, it is, in particular, essential to choose correctly the size of the modelled area which represents the subsoil, the boundary conditions and the size of the finite element network. The parametric study evaluates impacts of those parameters on final deformation. The parametric study is conducted of 168 variant models.


Sign in / Sign up

Export Citation Format

Share Document