scholarly journals Sorption of cationic dyes from aqueous solutions by moss Rhytidiadelphus squarrosus: Kinetics and equilibrium studies

2021 ◽  
Vol 9 (1) ◽  
pp. 53-62
Author(s):  
Lucia Remenárová ◽  
Martin Pipíška ◽  
Miroslav Horník ◽  
Jozef Augustín

With the aim to investigate sorption properties of natural sorbent prepared from moss Rhytidiadelphus squarrosus we elucidated biosorption of cationic dyes Malachite green (BG4), Auramine O (BY2) and Thioflavine T (BY1) from aqueous solutions. The removal of dyes by moss biosorbent was found to be rapid at an initial stage and the equilibrium was reached within 1-2 hours. The pseudo-n-order kinetic model was successfully applied to the kinetic data and the order of adsorption reaction was calculated in the range from 1.7 to 2.6. The value of rate constant kn' ranged from 0.001 to 0.039 [min-1]/[μmol/g]1-n. The equilibrium data were fitted to the adsorption isotherms. The Freundlich isotherm was found to represent the measured sorption data of BG4, BY1 and BY2 well. The maximum sorption capacities of moss biomass from single dye solutions calculated by Langmuir equation were 354 μmol/g for BG4, 310 μmol/g for BY1 and 382 μmol/g for BY2. These results showed that the prepared biomass presents low-cost, natural and easy available sorbent which may be potentially used for removal of dyes from environment and also may be an alternative to more costly materials such as activated carbon.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


Author(s):  
Teba H. Mhawesh ◽  
Ziad T. Abd Ali

The potential application of granules of Granular brick waste as a low-cost sorbent for removal of Pb+2 ions from aqueous solutions has been studied. The properties of Granular brick waste were determined through several tests such as X-Ray diffraction , Energy dispersive X-ray, Scanning electron microscopy , and surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of lead (89.5 %) were 2.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The sorption data obtained by batch experiments subjected to the three isotherm models called Langmuir, Freundlich and   Elovich. The results showed that the Langmuir isotherm model described well the sorption data (R2= 0.9866) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo_first_order and pseudo_second_order. The pseudo-second-order kinetic model was found to agree well with the experimental data.


Author(s):  
Gerardo León ◽  
Francisco Saura ◽  
Asunción María Hidalgo ◽  
Beatriz Miguel

In this paper, we describe the removal of cephalosporin C (CPC) from aqueous solutions by adsorption onto activated olive stones (AOS) in a stirred tank. For comparative purposes, several experiments of adsorption onto commercial granular activated carbon were carried out. A quantum study of the different species of cephalosporin C that, depending on the pH, exist in aqueous solution pointed to a favorable mass transfer process during adsorption. Activated olive stones were characterized by SEM, EDX and IR techniques and their pHzc was determined. A 10−3 M HCl cephalosporin C solution has been selected for the adsorption experiments because at the pH of that solution both electrostatic and hydrogen bond interactions are expected to be established between the adsorbate and the adsorbent. The adsorption process is best described by the Freundlich isotherm model and the pseudo-second-order kinetic model, while the adsorption mechanism is mainly controlled by film diffusion. Under the conditions studied, the adsorption process is of a physical nature, endothermic and spontaneous. Comparison of the adsorption results obtained in this paper with those of other authors shows that the efficiency of AOS is 20% of that of activated carbon but 65% higher than that of the XAD-2 adsorbent. Considering its low price, abundance, easy accessibility and eco-compatibility, the use of activated olive stones as adsorbents for the removal of emerging pollutants from aqueous solutions represents an interesting possibility from both the economic and the environmental points of view.


Author(s):  
Hilda Elizabeth Reynel-Avila ◽  
Adrian Bonilla-Petriciolet ◽  
Guadalupe de la Rosa

In this paper, we report the competitive removal of Pb, Cd, and Ni ions from binary metal solutions using chicken feathers. These heavy metals are very toxic for human being and are present in wastewaters of several industrial activities. Therefore, multi-component sorption studies are required to identify the capabilities and limitations of chicken feathers as low-cost sorbent for the simultaneous removal of these metal ions from wastewaters. To the best of our knowledge, sorption equilibrium studies involving chicken feathers and Pb, Cd, and Ni in binary aqueous solutions have not been reported. Therefore, the binary sorption data for systems Pb - Cd, Pb – Ni, and Cd - Ni at different pH conditions are reported in this paper. Our experimental data are modeled using multi-component isotherm equations and desorption studies were also performed. In summary, this study provides new experimental data to identify the competitive effects of these metal ions onto the multi-component sorption performance of chicken feathers.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Lucia Remenárová ◽  
Martin Pipíška ◽  
Miroslav Horník ◽  
Jozef Augustín

A biosorbent prepared from moss Rhytidiadelphus squarrosus biomass was used for biosorption of cationic dyes – Malachite green (BG4), Auramine O (BY2) and Thioflavine T (BY1) from binary aqueous solutions. Sorption data obtained at non-equilibrium conditions were analyzed by Sheindorf-Rebuhn-Sheintuch (SRS) equation (competitive model for binary systems derived from Freundlich isotherm) and extended model of Freundlich isotherm. Following the comparison of coefficient of determination values (R2) as well as values of root mean squared error (RMSE), the extended model of Freundlich isotherm was more suitable for description of investigated binary systems BG4-BY1 (R2 BG4 = 0.983, R2 BY1 = 0.993) and BG4-BY2 (R2 BG4 = 0.976, R2 BY2 = 0.995). The competition coefficients aij, obtained from SRS model can be considered as a way to quantify mutual competitive interactions. The competition coefficients indicated that the presence of BY1 in binary system decreased the sorption of BG4 (aBY1,BG4 = 0.835) while presence of BG4 (aBG4,BY1 = 0.208) has less pronounced competitive effect on the sorption of BY1 onto biosorbent. Competition coefficients obtained for binary system BY1-BG4 indicate that BG4 (aBG4,BY2 = 0.186) was more significantly affected by the presence of BY2 (aBY2,BG4 = 1.167). Finally, equations used in this work were represented by the three-imensional biosorption isotherm surfaces.


2019 ◽  
Vol 54 (4) ◽  
pp. 278-289 ◽  
Author(s):  
Bolanle M. Babalola ◽  
Adegoke O. Babalola ◽  
Habibat O. Adubiaro ◽  
Olushola S. Ayanda ◽  
Simphiwe M. Nelana ◽  
...  

Abstract The removal of Pb(II) ions from synthetic wastewater using Delonix regia pods and leaves as low-cost biosorbents was investigated. The elemental, morphological and phase characterization of Delonix regia pods and leaves were examined before and after biosorption. The adsorption process at various pH values, contact times, initial concentration of Pb(II) ions and adsorbent doses was studied with the aim of investigating the consequences of these parameters on the process of biosorption. The Langmuir adsorption isotherm provided the best fit for the experimental data of the pods while the Freundlich isotherm gave a better fit for the leaves of Delonix regia. The optimum adsorption capacity of 30.27 mg/g for the pods and 27.60 mg/g for the leaves was achieved when 0.5 g of the adsorbent was mixed with 20 mL of 1,000 mg/L Pb(II) ions solution for 30 min at 21 ± 2 °C and a stirring speed of 18 rpm. The data obtained from the time-dependent experiment of the biosorbents followed the pseudo-second-order kinetic model. This study showed that Delonix regia pods and leaves could be developed further as a low-cost sorbent that could be harnessed for removing Pb from industrial wastewater and thus limit water pollution from point sources.


2011 ◽  
Vol 63 (10) ◽  
pp. 2114-2122 ◽  
Author(s):  
Lei Zhang ◽  
Qing Lin ◽  
Xingjia Guo ◽  
Francis Verpoort

Florisil was employed for the sorption of antimony ions from aqueous solutions. A detailed study of the process was performed by varying the sorption time, pH, and temperature. The sorption was found to be fast, equilibrium was reached within 15 min. Moreover, a maximum sorption has been achieved from solution when the pH ranges between 1–10. From kinetic experiments it follows that the process correlate with the second-order kinetic model. The overall rate process appears to be influenced by both boundary layer diffusion and intra-particle diffusion. The Langmuir and Dubinin-Radushkevich (D-R) type sorption isotherms can be applied to fit and interpret the sorption data. The mean energy of adsorption (9.73 kJ mol−1) was calculated from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. Furthermore, the thermodynamic parameters for the sorption were also determined, and the ΔH0 and ΔG0 values indicate a spontaneous endothermic behavior.


2020 ◽  
Vol 22 (4) ◽  
pp. 36-47
Author(s):  
Marel Ortíz-Gutiérrez ◽  
Ruth Alfaro-Cuevas-Villanueva ◽  
Verónica Martínez-Miranda ◽  
Orlando Hernández-Cristóbal ◽  
Raúl Cortés-Martínez

AbstractThe use of guava seeds (GS) and acid-modified guava seeds (MGS) for the removal of Cr(VI) from aqueous solutions was investigated. Batch-type experiments were performed with Cr(VI) aqueous solutions and biosorbents to determine the kinetic and equilibrium sorption parameters. Results indicated that GS and MGS were capable of reducing and remove Cr(VI) from solutions, but the reduction was only observed at some experimental conditions. Infrared analysis showed that several functional groups were involved in the reduction, and biosorption of Cr(VI), particularly alcohol, phenolic, carboxylic, and methoxymethyl structures. The mechanisms of reduction and biosorption depended upon the type of biosorbent, pH, and temperature of the system. The pseudo-second-order kinetic model describes the kinetic sorption data, and the Langmuir-Freundlich (L-F) model describes the isotherm data in most cases. Significantly high total chromium biosorption capacities were obtained. Acid modification of guava seeds improves chromium biosorption performance.


2020 ◽  
Vol 21 (2) ◽  
pp. 15-23
Author(s):  
Teba Hameed Mhawesh ◽  
Ziad T. Abd Ali

   The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three isotherm models called Langmuir, Freundlich and Elovich, The results showed that the Freundlich isotherm model described well the sorption data (R2=0.9176) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo-first-order and pseudo-second-order. The pseudo-first-order kinetic model was found to agree well with the experimental data.  


Author(s):  
Yusef Omidi Khaniabadi ◽  
Hassan Basiri ◽  
Heshmatollah Nourmoradi ◽  
Mohammad Javad Mohammadi ◽  
Ahmad Reza Yari ◽  
...  

AbstractIn this study, the sorption of Congo red (CR), as a toxic dye, from aqueous media was investigated using montmorillonite (MMT) as a low-cost adsorbent. The influence of several factors such as contact time, pH, adsorbent dosage, dye content, and ionic strength was investigated on the dye removal. MMT was characterized by Fourier transformed infrared (FTIR) spectroscopy and X-ray diffractometer (XRD). Different kinetic and isotherm models including pseudo-first and pseudo-second order kinetic and Langmuir and Freundlich were applied to analyze experimental data, respectively. The results showed that the data were well fitted by pseudo-second-order kinetic and Freundlich isotherm models. The optimum conditions for the sorption of CR were achieved over 40 min and at pH=2. According to the results of the present study, MMT can be used as a low-cost, eco-friendly and effective option for the adsorption of CR from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document