scholarly journals Biosorption of cationic dyes BY1, BY2 and BG4 by moss Rhytidiadelphus squarrosus from binary solutions

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Lucia Remenárová ◽  
Martin Pipíška ◽  
Miroslav Horník ◽  
Jozef Augustín

A biosorbent prepared from moss Rhytidiadelphus squarrosus biomass was used for biosorption of cationic dyes – Malachite green (BG4), Auramine O (BY2) and Thioflavine T (BY1) from binary aqueous solutions. Sorption data obtained at non-equilibrium conditions were analyzed by Sheindorf-Rebuhn-Sheintuch (SRS) equation (competitive model for binary systems derived from Freundlich isotherm) and extended model of Freundlich isotherm. Following the comparison of coefficient of determination values (R2) as well as values of root mean squared error (RMSE), the extended model of Freundlich isotherm was more suitable for description of investigated binary systems BG4-BY1 (R2 BG4 = 0.983, R2 BY1 = 0.993) and BG4-BY2 (R2 BG4 = 0.976, R2 BY2 = 0.995). The competition coefficients aij, obtained from SRS model can be considered as a way to quantify mutual competitive interactions. The competition coefficients indicated that the presence of BY1 in binary system decreased the sorption of BG4 (aBY1,BG4 = 0.835) while presence of BG4 (aBG4,BY1 = 0.208) has less pronounced competitive effect on the sorption of BY1 onto biosorbent. Competition coefficients obtained for binary system BY1-BG4 indicate that BG4 (aBG4,BY2 = 0.186) was more significantly affected by the presence of BY2 (aBY2,BG4 = 1.167). Finally, equations used in this work were represented by the three-imensional biosorption isotherm surfaces.

2021 ◽  
Vol 9 (1) ◽  
pp. 53-62
Author(s):  
Lucia Remenárová ◽  
Martin Pipíška ◽  
Miroslav Horník ◽  
Jozef Augustín

With the aim to investigate sorption properties of natural sorbent prepared from moss Rhytidiadelphus squarrosus we elucidated biosorption of cationic dyes Malachite green (BG4), Auramine O (BY2) and Thioflavine T (BY1) from aqueous solutions. The removal of dyes by moss biosorbent was found to be rapid at an initial stage and the equilibrium was reached within 1-2 hours. The pseudo-n-order kinetic model was successfully applied to the kinetic data and the order of adsorption reaction was calculated in the range from 1.7 to 2.6. The value of rate constant kn' ranged from 0.001 to 0.039 [min-1]/[μmol/g]1-n. The equilibrium data were fitted to the adsorption isotherms. The Freundlich isotherm was found to represent the measured sorption data of BG4, BY1 and BY2 well. The maximum sorption capacities of moss biomass from single dye solutions calculated by Langmuir equation were 354 μmol/g for BG4, 310 μmol/g for BY1 and 382 μmol/g for BY2. These results showed that the prepared biomass presents low-cost, natural and easy available sorbent which may be potentially used for removal of dyes from environment and also may be an alternative to more costly materials such as activated carbon.


2018 ◽  
Vol 619 ◽  
pp. A138
Author(s):  
V. Perdelwitz ◽  
S. Czesla ◽  
J. Robrade ◽  
T. Pribulla ◽  
J. H. M. M. Schmitt

Context.Close binary systems provide an excellent tool for determining stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, postulated to be the underlying reason for radius inflation in many of the components. Aims.We extend the sample of low-mass binary systems with well-known X-ray properties. Methods.We analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve was modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras was analyzed to search for hints of orbital modulation. Results.We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.


2021 ◽  
Vol 149 ◽  
Author(s):  
Junwen Tao ◽  
Yue Ma ◽  
Xuefei Zhuang ◽  
Qiang Lv ◽  
Yaqiong Liu ◽  
...  

Abstract This study proposed a novel ensemble analysis strategy to improve hand, foot and mouth disease (HFMD) prediction by integrating environmental data. The approach began by establishing a vector autoregressive model (VAR). Then, a dynamic Bayesian networks (DBN) model was used for variable selection of environmental factors. Finally, a VAR model with constraints (CVAR) was established for predicting the incidence of HFMD in Chengdu city from 2011 to 2017. DBN showed that temperature was related to HFMD at lags 1 and 2. Humidity, wind speed, sunshine, PM10, SO2 and NO2 were related to HFMD at lag 2. Compared with the autoregressive integrated moving average model with external variables (ARIMAX), the CVAR model had a higher coefficient of determination (R2, average difference: + 2.11%; t = 6.2051, P = 0.0003 < 0.05), a lower root mean-squared error (−24.88%; t = −5.2898, P = 0.0007 < 0.05) and a lower mean absolute percentage error (−16.69%; t = −4.3647, P = 0.0024 < 0.05). The accuracy of predicting the time-series shape was 88.16% for the CVAR model and 86.41% for ARIMAX. The CVAR model performed better in terms of variable selection, model interpretation and prediction. Therefore, it could be used by health authorities to identify potential HFMD outbreaks and develop disease control measures.


2021 ◽  
Vol 13 (3) ◽  
pp. 438
Author(s):  
Subrina Tahsin ◽  
Stephen C. Medeiros ◽  
Arvind Singh

Long-term monthly coastal wetland vegetation monitoring is the key to quantifying the effects of natural and anthropogenic events, such as severe storms, as well as assessing restoration efforts. Remote sensing data products such as Normalized Difference Vegetation Index (NDVI), alongside emerging data analysis techniques, have enabled broader investigations into their dynamics at monthly to decadal time scales. However, NDVI data suffer from cloud contamination making periods within the time series sparse and often unusable during meteorologically active seasons. This paper proposes a virtual constellation for NDVI consisting of the red and near-infrared bands of Landsat 8 Operational Land Imager, Sentinel-2A Multi-Spectral Instrument, and Advanced Spaceborne Thermal Emission and Reflection Radiometer. The virtual constellation uses time-space-spectrum relationships from 2014 to 2018 and a random forest to produce synthetic NDVI imagery rectified to Landsat 8 format. Over the sample coverage area near Apalachicola, Florida, USA, the synthetic NDVI showed good visual coherence with observed Landsat 8 NDVI. Comparisons between the synthetic and observed NDVI showed Root Mean Squared Error and Coefficient of Determination (R2) values of 0.0020 sr−1 and 0.88, respectively. The results suggest that the virtual constellation was able to mitigate NDVI data loss due to clouds and may have the potential to do the same for other data. The ability to participate in a virtual constellation for a useful end product such as NDVI adds value to existing satellite missions and provides economic justification for future projects.


2021 ◽  
Vol 13 (7) ◽  
pp. 3727
Author(s):  
Fatema Rahimi ◽  
Abolghasem Sadeghi-Niaraki ◽  
Mostafa Ghodousi ◽  
Soo-Mi Choi

During dangerous circumstances, knowledge about population distribution is essential for urban infrastructure architecture, policy-making, and urban planning with the best Spatial-temporal resolution. The spatial-temporal modeling of the population distribution of the case study was investigated in the present study. In this regard, the number of generated trips and absorbed trips using the taxis pick-up and drop-off location data was calculated first, and the census population was then allocated to each neighborhood. Finally, the Spatial-temporal distribution of the population was calculated using the developed model. In order to evaluate the model, a regression analysis between the census population and the predicted population for the time period between 21:00 to 23:00 was used. Based on the calculation of the number of generated and the absorbed trips, it showed a different spatial distribution for different hours in one day. The spatial pattern of the population distribution during the day was different from the population distribution during the night. The coefficient of determination of the regression analysis for the model (R2) was 0.9998, and the mean squared error was 10.78. The regression analysis showed that the model works well for the nighttime population at the neighborhood level, so the proposed model will be suitable for the day time population.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daisuke Miyamori ◽  
Takeshi Uemura ◽  
Wenliang Zhu ◽  
Kei Fujikawa ◽  
Takaaki Nakaya ◽  
...  

AbstractThe recent increase of the number of unidentified cadavers has become a serious problem throughout the world. As a simple and objective method for age estimation, we attempted to utilize Raman spectrometry for forensic identification. Raman spectroscopy is an optical-based vibrational spectroscopic technique that provides detailed information regarding a sample’s molecular composition and structures. Building upon our previous proof-of-concept study, we measured the Raman spectra of abdominal skin samples from 132 autopsy cases and the protein-folding intensity ratio, RPF, defined as the ratio between the Raman signals from a random coil an α-helix. There was a strong negative correlation between age and RPF with a Pearson correlation coefficient of r = 0.878. Four models, based on linear (RPF), squared (RPF2), sex, and RPF by sex interaction terms, were examined. The results of cross validation suggested that the second model including linear and squared terms was the best model with the lowest root mean squared error (11.3 years of age) and the highest coefficient of determination (0.743). Our results indicate that the there was a high correlation between the age and RPF and the Raman biological clock of protein folding can be used as a simple and objective forensic age estimation method for unidentified cadavers.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) in aqueous solution under UV-irradiation of wavelength 400 nm was carried out with TiO2 doped with activated carbon (A) and clinoptilolite (Z) via the co-precipitation technique. The physiochemical properties of the nanocomposite (A–TiO2 and Z–TiO2) and TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. Results of the nanocomposite (A–TiO2 and Z–TiO2) efficiency was compared to that with the TiO2, which demonstrated their adsorption and synergistic effect for the removal of chemical oxygen demand (COD) and color from the wastewater. At an optimal load of 4 g, the photocatalytic degradation activity (Z–TiO2 > A–TiO2 > TiO2) was found favorably by the second-order kinetic model. Consequently, the Langmuir adsorption isotherms favored the nanocomposites (Z–TiO2 > A–TiO2), whereas that of the TiO2 fitted very well on the Freundlich isotherm approach. Z–TiO2 evidently exhibited a high photocatalytic efficacy of decomposition over 80% of BPB (COD) at reaction rate constant (k) and coefficient of determination (R2) values of 5.63 × 10−4 min−1 and 0.989, respectively.


2021 ◽  
Vol 23 (15) ◽  
pp. 9211-9217
Author(s):  
Guannan Qu ◽  
Rasheed Bilal ◽  
Minsi Xin ◽  
Zhong Lv ◽  
Guangyong Jin ◽  
...  

Hydrogen bond generated between DMSO and benzene binary system induced changes in the Raman properties during phase transition.


2020 ◽  
pp. 0958305X2097728
Author(s):  
Jiyeon Choi ◽  
Dong-Ik Slong ◽  
Won Sik Shin

This study investigated the sorption of phenol and 4-chlorophenol (4-CP) on natural bentonite modified with hexadecyltrimethylammonium (HDTMA) cation. The Freundlich, Langmuir, Dubinin−Radushkevich (DR), Sips, and Polanyi−Dubinin−Manes (PDM) models fitted the sorption data well (R2 > 0.92). The Freundlich coefficient and the maximum sorbed amount of the Langmuir and PDM models of 4-CP were higher than phenol because of higher hydrophobicity (log Kow = 2.39 for 4-CP and 1.46 for phenol). The PDM model that includes solubility and molar volume was highly useful in predicting the sorption of phenols having widely different hydrophobicity and solubility. The characteristic curves, the plot of sorbed volume ( qv) versus the sorption potential per molar volume ( ε/ Vm) of 4-CP and phenol were distinctly different although they have similar chemical compositions. The selectivity of 4-CP (3.72) was higher than that of phenol (0.27) in binary sorption systems. The sorbed volume ( qv) in the binary sorption was remarkably reduced and the characteristic curve had wider distribution owing to competition in pore-filling. The sorption behaviors were elucidated by partitioning and pore-filling mechanisms. Among the tested binary sorption models, the modified Langmuir competitive model was the best in the prediction of the binary sorption (R2 > 0.98).


2001 ◽  
Vol 36 (4) ◽  
pp. 719-735 ◽  
Author(s):  
Angela Keane ◽  
Subhasis Ghoshal

Abstract Lignin, a major polymeric constituent of woody plant tissue, is an abundant source of natural organic matter available as a waste product from the pulp and paper and the fuel ethanol industries. In this study, the sorptive capacity of acid hydrolysis lignin for naphthalene, a representative nonpolar hydrophobic organic compound (HOC), was investigated. When powdered lignin is mixed with distilled water, dissolved and/or colloidal organic matter leaches into the aqueous phase imparting a cloudy yellowish colour. A washing and filtering protocol was developed for pretreating the lignin employed in the sorption studies. Results from batch sorption experiments showed that acid hydrolysis lignin has a strong affinity for naphthalene. The Freundlich isotherm coefficients obtained indicate that the sorption isotherm for naphthalene on hydrolysis lignin is nearly linear. A modified Freundlich equation was employed in order to compare sorption data for HOCs on lignin and activated carbon through the use of unit equivalent coefficients. The results presented in this research and in the literature suggest that the two sorbents are comparable in terms of sorption coefficients. It was determined that acid hydrolysis lignin is unsuitable for use in a packed bed since pumping a naphthalene solution through a column packed with lignin caused the wet lignin to become significantly hardened over time, resulting in a large pressure drop across the system.


Sign in / Sign up

Export Citation Format

Share Document