scholarly journals Reuse of Brick Waste as a Cheap-Sorbent for the Removal of Nickel Ions from Aqueous Solutions

2020 ◽  
Vol 21 (2) ◽  
pp. 15-23
Author(s):  
Teba Hameed Mhawesh ◽  
Ziad T. Abd Ali

   The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three isotherm models called Langmuir, Freundlich and Elovich, The results showed that the Freundlich isotherm model described well the sorption data (R2=0.9176) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo-first-order and pseudo-second-order. The pseudo-first-order kinetic model was found to agree well with the experimental data.  


Author(s):  
Teba H. Mhawesh ◽  
Ziad T. Abd Ali

The potential application of granules of Granular brick waste as a low-cost sorbent for removal of Pb+2 ions from aqueous solutions has been studied. The properties of Granular brick waste were determined through several tests such as X-Ray diffraction , Energy dispersive X-ray, Scanning electron microscopy , and surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of lead (89.5 %) were 2.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The sorption data obtained by batch experiments subjected to the three isotherm models called Langmuir, Freundlich and   Elovich. The results showed that the Langmuir isotherm model described well the sorption data (R2= 0.9866) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo_first_order and pseudo_second_order. The pseudo-second-order kinetic model was found to agree well with the experimental data.



2019 ◽  
Vol 35 (2) ◽  
pp. 591-596 ◽  
Author(s):  
Naveen Chandra Joshi ◽  
Vaishali Rangar ◽  
Ruchi Sati ◽  
Ekta Joshi ◽  
Ajay Singh

Recently, the heavy metals are known for their toxicity to living organisms and natural environment. In the present study, we have removed Ni2+ and Cd2+ ions from synthetically prepared waste water under batch experiments using the waste leaves of Quercus leucotrichophora as low cost adsorbents. The adsorbent was characterized by FTIR and FESEM methods and the batch experiments included contact time, pH, dosage, temperature and concentration. The adsorption of metal ions was found maximum at the optimized conditions such as contact time 60 minutes, dosage 1 g, pH 5 and lower metal ion concentrations. The percentage adsorption at contact time 60 minutes, dosage 1 g and pH 6 was found 50.2, 51.0 and 74.0% for nickel and 38.8, 29.9 and 70.1% for cadmium. The adsorption data under selected batch system have been tested with Langmuir, Freundlich isotherm models, pseudo first order and pseudo second order kinetic models. Langmuir isotherm model and pseudo first order kinetic model were best fitted to adsorption of nickel and cadmium onto waste leaf powder of Quercus leucotrichophora.



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nourmoradi ◽  
Mehdi Khiadani ◽  
M. Nikaeen

Multicomponent adsorption of benzene, toluene, ethylbenzene, and xylene (BTEX) was assessed in aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide (TTAB-Mt). Batch experiments were conducted to determine the influences of parameters including loading rates of surfactant, contact time, pH, adsorbate concentration, and temperature on the adsorption efficiency. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to determine the adsorbent properties. Results showed that the modification of the adsorbent via the surfactant causes structural changes of the adsorbent. It was found that the optimum adsorption condition achieves with the surfactant loading rate of 200% of the cation exchange capacity (CEC) of the adsorbent for a period of 24 h. The sorption of BTEX by TTAB-Mt was in the order ofB<T<E<X. The experimental data were fitted by many kinetic and isotherm models. The results also showed that the pseudo-second-order kinetic model and Freundlich isotherm model could, respectively, be fitted to the experimental data better than other available kinetic and isotherm models. The thermodynamic study indicated that the sorption of BTEX with TTAB-Mt was achieved spontaneously and the adsorption process was endothermic as well as physical in nature. The regeneration results of the adsorbent also showed that the adsorption capacity of adsorbent after one use was 51% to 70% of original TTAB-Mt.



Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.



Column adsorption of the As (III) & As (V) using rice husk mediated carbon embedded silica (CES) and zeolite (Z-RHA) has been proved promising technique rather than the other conventional methods. The present work investigates the adsorption capability of newly manufactured CES and Z-RHA to remove As (III) & As (V) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive X-ray (EDX), and Transmission electron microscopy (TEM) analysis have been investigated for the characterization of synthesized materials. The effects of different parameters like initial concentrations, column diameter, column height, particle size distribution have been investigated. The maximum removal efficiency of CES adsorbents for As (III) is 98% and for As (V) is 85%, and of Z-RHA for As (III) is 95% and for As (V) is 92%. To describe the adsorption behavior the Langmuir and Freundlich isotherm models as well as to kinetics models like Adam-Bohart, Thomas, and Yoon Nelson model were applied. Finally, to dispose of the rice husk mediated adsorbents after arsenic treatment solidification has been done.



2021 ◽  
Vol 9 (1) ◽  
pp. 53-62
Author(s):  
Lucia Remenárová ◽  
Martin Pipíška ◽  
Miroslav Horník ◽  
Jozef Augustín

With the aim to investigate sorption properties of natural sorbent prepared from moss Rhytidiadelphus squarrosus we elucidated biosorption of cationic dyes Malachite green (BG4), Auramine O (BY2) and Thioflavine T (BY1) from aqueous solutions. The removal of dyes by moss biosorbent was found to be rapid at an initial stage and the equilibrium was reached within 1-2 hours. The pseudo-n-order kinetic model was successfully applied to the kinetic data and the order of adsorption reaction was calculated in the range from 1.7 to 2.6. The value of rate constant kn' ranged from 0.001 to 0.039 [min-1]/[μmol/g]1-n. The equilibrium data were fitted to the adsorption isotherms. The Freundlich isotherm was found to represent the measured sorption data of BG4, BY1 and BY2 well. The maximum sorption capacities of moss biomass from single dye solutions calculated by Langmuir equation were 354 μmol/g for BG4, 310 μmol/g for BY1 and 382 μmol/g for BY2. These results showed that the prepared biomass presents low-cost, natural and easy available sorbent which may be potentially used for removal of dyes from environment and also may be an alternative to more costly materials such as activated carbon.



2012 ◽  
Vol 573-574 ◽  
pp. 86-91
Author(s):  
Xue Feng Liang ◽  
Wan Guo Hou ◽  
Ying Ming Xu ◽  
Lin Wang ◽  
Yue Bing Sun

Hydrotalcite-like compounds containing Mg2+, Al3+ and Fe3+ with a constant M2+/M3+ ratio but varying Al3+/Fe3+ ratios have been prepared. The effects of iron contents on the structural and sorption of Pb2+ by Mg-Al-Fe HTlc samples were investigated. The maximum sorption amounts were about 88-201 mg/g for Mg-Al-Fe HTlc samples. The sorption isotherm and kinetic processes can be described with Freundlich isotherm and pseudo first order kinetic model, respectively. The sorption amounts and rate increase with the increase of iron contents in HTlc samples. The sorption mechanism of Pb2+ on Mg-Al-Fe HTlcs may be the surface-induced precipitation and chemical binding adsorption.



Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1403
Author(s):  
Kashma Sharma ◽  
Shreya Sharma ◽  
Vipasha Sharma ◽  
Pawan Kumar Mishra ◽  
Adam Ekielski ◽  
...  

The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.



2018 ◽  
Vol 66 (2) ◽  
pp. 121-127
Author(s):  
AZM Mainul Islam Mazumder ◽  
Chowdhury Raihan Bikash ◽  
Md Ataur Rahman ◽  
Md Mufazzal Hossain

Adsorptive removal of remazol red R (RRR) and remazol black B (RBB) from aqueous solution has been investigated by using ZnO as an adsorbent. Time for adsorption equilibrium, kinetics of adsorption at different initial concentrations of dyes and adsorption isotherms at different temperatures have been studied. Adsorption capacity increased with increasing initial dye concentration. The pseudo first-order and pseudo second-order kinetics were used to describe kinetic data and the rate constants were evaluated. Experimental data fits better in the pseudo second-order kinetic model than in the pseudo first-order kinetic model for both the dyes. Langmuir and Freundlich isotherm models were applied to describe the adsorption of RRR and RBB onto ZnO powders. Langmuir isotherm model provided a better correlation for the experimental data in comparison to the Freundlich isotherm model. Adsorption of both RRR and RBB on ZnO are physical in nature and increases with decreasing temperature. The equilibrium adsorption capacity decreases from 3.43 mg/g at 200C to 2.36 mg/g at 400C for RRR whereas that in the case of RBB changes from 0.77 mg/g at 300C to 0.75 mg/g at 400C. Adsorption of RRR on ZnO was found to be three times higher than the adsorption of RBB at a particular temperature. A model for adsorption of both the dyes has been proposed. Dhaka Univ. J. Sci. 66(2): 121-127, 2018 (July)



Author(s):  
Seyedeh Mahsa Seyed Danesh ◽  
Shahab Shariati ◽  
Hossein Faghihian

Objective: In this study, amine functionalized magnetite Kit-6 silica nanocomposite (Fe3O4@SiO2@Kit-6-NH2) was synthesized as an adsorbent for removing Carmoisine food dye from aqueous solutions. Method: The nanocomposite was chemically synthesized and was characterized by X-ray diffraction analysis (XRD), vi-brating sample magnetometer (VSM), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Taguchi orthogonal array experimental design method was used to op-timize the experimental conditions including adsorbent amount, pH of solution, amount of salt, the volume of sample and contact time. Pseudo first-order, pseudo second-order, intra-particle diffusion and Elovich kinetic models were investigated to study the kinetic parameters of sorption process. Results: The kinetic data corresponded to the pseudo second-order kinetic model with R2 = 0.9999. Also, adsorption data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The results indicated that the data were well fitted to the Freundlich isotherm model (R2 = 0.9984, n=1.0786). The reusability tests showed the proposed nanocomposite can be used more than 8 cycles with removal efficiency higher than 90%. Conclusion: The applicability study of proposed nanocomposite proved its ability for efficient removal of Carmoisine dye from real aqueous samples.



Sign in / Sign up

Export Citation Format

Share Document