scholarly journals Two-Stage Frame Extraction in Video Analysis for Accurate Prediction of Object Tracking by Improved Deep Learning

2021 ◽  
Vol 3 (4) ◽  
pp. 322-335
Author(s):  
R. Rajesh Sharma

Recently, the information extraction from graphics and video summarizing using keyframes have benefited from a recent look at the visual content-based method. Analysis of keyframes in a movie may be done by extracting visual elements from the video clips. In order to accurately anticipate the path of an item in real-time, the visible components are utilized. The frame variations with low-level properties such as color and structure are the basis of the rapid and reliable approach. This research work contains 3 phases: preprocessing, two-stage extraction, and video prediction module. Besides, this framework on object track estimation uses the probabilistic deterministic process to arrive at an estimate of the object. Keyframes for the whole video sequence are extracted using a proposed two-stage feature extraction approach by CNN feature extraction. An alternate sequence is first constructed by comparing the color characteristics of neighboring frames in the original series to those of the generated one. When an alternate arrangement is compared to the final keyframe sequence, it is found that there are substantial structural changes between consecutive frames. Three keyframe extraction techniques based on on-time behavior have been employed in this study. A keyframe extraction optimization phase termed as "Adam" optimizer, dependent on the number of final keyframes is then introduced. The proposed technique outperforms the prior methods in computational cost and resilience across a wide range of video formats, video resolutions, and other parameters. Finally, this research compares SSIM, MAE, and RMSE performance metrics with the traditional approach.

2020 ◽  
Vol 99 (5) ◽  
pp. 493-497
Author(s):  
M. M. Aslanova ◽  
T. V. Gololobova ◽  
K. Yu. Kuznetsova ◽  
Tamari R. Maniya ◽  
D. V. Rakitina ◽  
...  

Introduction. The purpose of our work was to justify the need to improve the legislative, regulatory and methodological framework and preventative measures in relation to the spread of parasitic infections in the provision of medical care. There is a wide range of pathogens of parasitic infestations that are transmitted to humans through various medical manipulations and interventions carried out in various medical institutions. Contaminated care items and furnishings, medical instruments and equipment, solutions for infusion therapy, medical personnel’s clothing and hands, reusable medical products, drinking water, bedding, suture and dressing materials can serve as a major factor in the spread of parasitic infections in the provision of medical care. Purpose of research is the study of the structure and SMP of parasitic origin, circulating on the objects of the production environment in multi-profile medical and preventive institutions of stationary type in order to prevent the occurrence of their spread within medical institutions. Material and methods. The material for the study was flushes taken from the production environment in 3 multi-profile treatment and prevention institutions of inpatient type: a multi-specialty hospital, a maternity hospital and a hospital specializing in the treatment of patients with intestinal diseases for the eggs of worms and cysts of pathogenic protozoa. Results. During the 2-year monitoring of medical preventive institutions, a landscape of parasitic contamination was found to be obtained from the flushes taken from the production environment objects in the premises surveyed as part of the research work. Discussions. In the course of research, the risk of developing ISMP of parasitic origin was found to be determined by the degree of epidemiological safety of the hospital environment, the number and invasiveness of treatment and diagnostic manipulations and various medical technologies. Conclusion. It is necessary to conduct an expert assessment of regulatory and methodological documents in the field of epidemiological surveillance and sanitary and hygienic measures for the prevention of medical aid related infections of parasitic origin, to optimize the regulatory and methodological base, to develop a number of preventive measures aimed at stopping the spread of parasitic infections in the medical network.


Author(s):  
Tung T. Vu ◽  
Ha Hoang Kha

In this research work, we investigate precoder designs to maximize the energy efficiency (EE) of secure multiple-input multiple-output (MIMO) systems in the presence of an eavesdropper. In general, the secure energy efficiency maximization (SEEM) problem is highly nonlinear and nonconvex and hard to be solved directly. To overcome this difficulty, we employ a branch-and-reduce-and-bound (BRB) approach to obtain the globally optimal solution. Since it is observed that the BRB algorithm suffers from highly computational cost, its globally optimal solution is importantly served as a benchmark for the performance evaluation of the suboptimal algorithms. Additionally, we also develop a low-complexity approach using the well-known zero-forcing (ZF) technique to cancel the wiretapped signal, making the design problem more amenable. Using the ZF based method, we transform the SEEM problem to a concave-convex fractional one which can be solved by applying the combination of the Dinkelbach and bisection search algorithm. Simulation results show that the ZF-based method can converge fast and obtain a sub-optimal EE performance which is closed to the optimal EE performance of the BRB method. The ZF based scheme also shows its advantages in terms of the energy efficiency in comparison with the conventional secrecy rate maximization precoder design.


Author(s):  
Tu Huynh-Kha ◽  
Thuong Le-Tien ◽  
Synh Ha ◽  
Khoa Huynh-Van

This research work develops a new method to detect the forgery in image by combining the Wavelet transform and modified Zernike Moments (MZMs) in which the features are defined from more pixels than in traditional Zernike Moments. The tested image is firstly converted to grayscale and applied one level Discrete Wavelet Transform (DWT) to reduce the size of image by a half in both sides. The approximation sub-band (LL), which is used for processing, is then divided into overlapping blocks and modified Zernike moments are calculated in each block as feature vectors. More pixels are considered, more sufficient features are extracted. Lexicographical sorting and correlation coefficients computation on feature vectors are next steps to find the similar blocks. The purpose of applying DWT to reduce the dimension of the image before using Zernike moments with updated coefficients is to improve the computational time and increase exactness in detection. Copied or duplicated parts will be detected as traces of copy-move forgery manipulation based on a threshold of correlation coefficients and confirmed exactly from the constraint of Euclidean distance. Comparisons results between proposed method and related ones prove the feasibility and efficiency of the proposed algorithm.


2019 ◽  
Vol 13 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Abhisek Sethy ◽  
Prashanta Kumar Patra ◽  
Deepak Ranjan Nayak

Background: In the past decades, handwritten character recognition has received considerable attention from researchers across the globe because of its wide range of applications in daily life. From the literature, it has been observed that there is limited study on various handwritten Indian scripts and Odia is one of them. We revised some of the patents relating to handwritten character recognition. Methods: This paper deals with the development of an automatic recognition system for offline handwritten Odia character recognition. In this case, prior to feature extraction from images, preprocessing has been done on the character images. For feature extraction, first the gray level co-occurrence matrix (GLCM) is computed from all the sub-bands of two-dimensional discrete wavelet transform (2D DWT) and thereafter, feature descriptors such as energy, entropy, correlation, homogeneity, and contrast are calculated from GLCMs which are termed as the primary feature vector. In order to further reduce the feature space and generate more relevant features, principal component analysis (PCA) has been employed. Because of the several salient features of random forest (RF) and K- nearest neighbor (K-NN), they have become a significant choice in pattern classification tasks and therefore, both RF and K-NN are separately applied in this study for segregation of character images. Results: All the experiments were performed on a system having specification as windows 8, 64-bit operating system, and Intel (R) i7 – 4770 CPU @ 3.40 GHz. Simulations were conducted through Matlab2014a on a standard database named as NIT Rourkela Odia Database. Conclusion: The proposed system has been validated on a standard database. The simulation results based on 10-fold cross-validation scenario demonstrate that the proposed system earns better accuracy than the existing methods while requiring least number of features. The recognition rate using RF and K-NN classifier is found to be 94.6% and 96.4% respectively.


2020 ◽  
Vol 5 (3) ◽  
pp. 224-235
Author(s):  
Harshal A. Pawar ◽  
Bhagyashree D. Bhangale

Background: Lipid based excipients have increased acceptance nowadays in the development of novel drug delivery systems in order to improve their pharmacokinetic profiles. Drugs encapsulated in lipids have enhanced stability due to the protection they experience in the lipid core of these nano-formulations. Phytosomes are newly discovered drug delivery systems and novel botanical formulation to produce lipophilic molecular complex which imparts stability, increases absorption and bioavailability of phytoconstituent. Curcumin, obtained from turmeric (Curcuma longa), has a wide range of biological activities. The poor solubility and wettability of curcumin are responsible for poor dissolution and this, in turn, results in poor bioavailability. To overcome these limitations, the curcumin-loaded nano phytosomes were developed to improve its physicochemical stability and bioavailability. Objective: The objective of the present research work was to develop nano-phytosomes of curcumin to improve its physicochemical stability and bioavailability. Methods: Curcumin-loaded nano phytosomes were prepared by using phospholipid Phospholipon 90 H using a modified solvent evaporation method. The developed curcumin nano phytosomes were evaluated by particle size analyzer and differential scanning calorimetry (DSC). Results: Results indicated that phytosomes prepared using curcumin and lipid in the ratio of 1:2 show good entrapment efficiency. The obtained curcumin phytosomes were spherical in shape with a size less than 100 nm. The prepared nano phytosomal formulation of curcumin showed promising potential as an antioxidant. Conclusion: The phytosomal complex showed sustained release of curcumin from vesicles. The sustained release of curcumin from phytosome may improve its absorption and lowers the elimination rate with an increase in bioavailability.


Author(s):  
Simeon J. Yates ◽  
Jordana Blejmar

Two workshops were part of the final steps in the Economic and Social Research Council (ESRC) commissioned Ways of Being in a Digital Age project that is the basis for this Handbook. The ESRC project team coordinated one with the UK Defence Science and Technology Laboratory (ESRC-DSTL) Workshop, “The automation of future roles”; and one with the US National Science Foundation (ESRC-NSF) Workshop, “Changing work, changing lives in the new technological world.” Both workshops sought to explore the key future social science research questions arising for ever greater levels of automation, use of artificial intelligence, and the augmentation of human activity. Participants represented a wide range of disciplinary, professional, government, and nonprofit expertise. This chapter summarizes the separate and then integrated results. First, it summarizes the central social and economic context, the method and project context, and some basic definitional issues. It then identifies 11 priority areas needing further research work that emerged from the intense interactions, discussions, debates, clustering analyses, and integration activities during and after the two workshops. Throughout, it summarizes how subcategories of issues within each cluster relate to central issues (e.g., from users to global to methods) and levels of impacts (from wider social to community and organizational to individual experiences and understandings). Subsections briefly describe each of these 11 areas and their cross-cutting issues and levels. Finally, it provides a detailed Appendix of all the areas, subareas, and their specific questions.


2021 ◽  
Vol 13 (6) ◽  
pp. 1143
Author(s):  
Yinghui Quan ◽  
Yingping Tong ◽  
Wei Feng ◽  
Gabriel Dauphin ◽  
Wenjiang Huang ◽  
...  

The fusion of the hyperspectral image (HSI) and the light detecting and ranging (LiDAR) data has a wide range of applications. This paper proposes a novel feature fusion method for urban area classification, namely the relative total variation structure analysis (RTVSA), to combine various features derived from HSI and LiDAR data. In the feature extraction stage, a variety of high-performance methods including the extended multi-attribute profile, Gabor filter, and local binary pattern are used to extract the features of the input data. The relative total variation is then applied to remove useless texture information of the processed data. Finally, nonparametric weighted feature extraction is adopted to reduce the dimensions. Random forest and convolutional neural networks are utilized to evaluate the fusion images. Experiments conducted on two urban Houston University datasets (including Houston 2012 and the training portion of Houston 2017) demonstrate that the proposed method can extract the structural correlation from heterogeneous data, withstand a noise well, and improve the land cover classification accuracy.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 290
Author(s):  
Maxim Pyzh ◽  
Kevin Keiler ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.


2021 ◽  
Vol 11 (13) ◽  
pp. 5859
Author(s):  
Fernando N. Santos-Navarro ◽  
Yadira Boada ◽  
Alejandro Vignoni ◽  
Jesús Picó

Optimal gene expression is central for the development of both bacterial expression systems for heterologous protein production, and microbial cell factories for industrial metabolite production. Our goal is to fulfill industry-level overproduction demands optimally, as measured by the following key performance metrics: titer, productivity rate, and yield (TRY). Here we use a multiscale model incorporating the dynamics of (i) the cell population in the bioreactor, (ii) the substrate uptake and (iii) the interaction between the cell host and expression of the protein of interest. Our model predicts cell growth rate and cell mass distribution between enzymes of interest and host enzymes as a function of substrate uptake and the following main lab-accessible gene expression-related characteristics: promoter strength, gene copy number and ribosome binding site strength. We evaluated the differential roles of gene transcription and translation in shaping TRY trade-offs for a wide range of expression levels and the sensitivity of the TRY space to variations in substrate availability. Our results show that, at low expression levels, gene transcription mainly defined TRY, and gene translation had a limited effect; whereas, at high expression levels, TRY depended on the product of both, in agreement with experiments in the literature.


2021 ◽  
Vol 13 (9) ◽  
pp. 5200
Author(s):  
Rayed Alyousef

Two-stage concrete (TSC), also known as prepacked aggregate concrete (PAC), differs from traditional concrete in terms of site application and manufacturing process. Although this type of concrete is not a replacement for conventional concrete applications, it is an ideal option for unusual and difficult placing conditions, especially for repairing existing concrete structures. In other words, this type of concrete is a newly developed concrete and made by placing and packing coarse aggregates and fibres in a designed formwork, then injecting a cement grout mixture into the free spaces between the aggregate particles using gravity or a pump device. For the mentioned system and others, concrete components used as floors or pavements must have an adequate degree of roughness during service life when exposed to skid and abrasion. Thus, this research work introduced a new concrete method (prepacked aggregates fibre-reinforced concrete—PAFRC) with high abrasion and skid resistance reinforced with waste polypropylene (PP) fibres from the carpet industry. The effects of PP fibres at 0–1% dosages on the mechanical properties, abrasion resistance, and skid resistance of PAFRC mixes were studied. The results revealed that the addition of PP fibres reduces the compressive strength of concrete mixtures. Nonetheless, the presence of PP fibres results in PAFRC mixes having higher tensile strength, abrasion resistance, and skid resistance than plain concrete. It was detected that in both grouting methods (gravity and pump), with the addition of PP fibre up to a specific dosage, the resistance against abrasion and skid was increased by about 26% compared to plain PAC mix. Additionally, the outcomes indicated that PAFRC is a promising material for applications such as pavements with high abrasion and skid resistance.


Sign in / Sign up

Export Citation Format

Share Document