scholarly journals Analysis of Recent Erosion Hazard Levels and Conservation Policy Recommendations for Lesti Subwatershed, Upper Brantas Watershed

Author(s):  
Andi Setyo Pambudi ◽  
Setyo Sarwanto Moersidik ◽  
Mahawan Karuniasa

The reduced age function of Sengguruh Dam/Reservoir due to erosion in the upper of Brantas Watershed (Lesti Subwatershed area) interferes with its role in flood control, irrigation water supply and the supply of most of the hydroelectricity in East Java Province, Indonesia. This study aims to estimate erosion, analyze the interrelationship of the causative factors and provides environmental conservation direction. The research method uses mixed methods. The quantitative method of erosion rates is done by calculating the Modify Universal Soil Loss Equation which is supported by GIS tools. The qualitative method is carried out with questionnaires and interviews in the Lesti Subwatershed area. The results showed that the current erosion rate in each ha of land (average) in the Lesti Subwatershed was 153,868 tons / ha / year (exceeding the tolerable erosion rate of 30 tons / ha / year). The rate of erosion in the Lesti Subwatershed has always increased in the last 14 years. Of the 12 Subdistricts in the Lesti watershed, as many as 6 Subdistricts are identified as having high levels of Erosion Hazards so that they were a priority to be handled, namely in the Wajak, Dampit, Tirtoyudo, , Gedangan, Sumbermanjing Wetan and Bantur Subdistricts. Dampit Subdistrict, Turen Subdistrict and Gondanglegi Subdistrict also face behavioral problems and high population pressure compared to other Subdistricts. Research also shows that there is a relationship between erosion and knowledge, attitudes and behavior of the community in the form of population pressure and land use patterns. It is recommended that environmental conservation directives focus on these 6 Sub-districts through the application of soil and water conservation. The results of spatial analysis at priority locations suggest conservation measures in the form of law enforcement or counseling, and community empowerment to increase the ability and independence of the community through providing access to resources, education, and training.

2020 ◽  
Author(s):  
Andi Setyo Pambudi

In a watershed, the Erosion Hazard Level (EHL) is usually associated with erosion rate and existing soil solum. In Lesti Sub-Watershed, erosion rate increases every year due to erosivity factor, erodibility, the length and slope, as well as crop factor and land conservation action. Analysis of erosion associated with population pressure has not been much discussed in the Lesti Sub-Watershed. This topic needs to be explored given that the erosion rate that affects sedimentation in the Sengguruh Reservoir, as an outlet of the Lesti Sub-Watershed, cannot be separated from the population activity therein. The population activity and the choice of use of land suppress the land so that it affects the carrying capacity of the watershed. Measuring land strength is usually based on the value of existing population pressure and its effect on vulnerability or erosion hazard level. This study seeks to assess the relationship between erosion hazard level and population pressure, as well as to determine the priority conservation areas in the Lesti Sub-watershed. The research approach uses a mixed method. The results shows that from 12 sub-districts in Lesti Sub-watershed there is 1 sub-district which has high population pressure as well as severe EHL. This sub-district is the most priority area for environmental conservation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shamsollah Ayoubi ◽  
Nafiseh Sadeghi ◽  
Farideh Abbaszadeh Afshar ◽  
Mohammad Reza Abdi ◽  
Mojtaba Zeraatpisheh ◽  
...  

Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χhf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χhf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss.


2017 ◽  
Author(s):  
Selene B. González-Morales ◽  
Alex Mayer ◽  
Neptalí Ramírez-Marcial

Abstract. The physical aspects and knowledge of soil erosion in six communities in rural Chiapas, Mexico were assessed. Average erosion rates estimated with the RUSLE model ranged from 200 to 1,200 ha−1 yr−1. Most erosion rates are relatively high due to steep slopes, sandy soils and bare land cover. The lowest rates occur where corn is cultivated for much of the year and slopes are relatively low. The results of a knowledge, attitudes and practices (KAP) survey showed that two-thirds of respondents believed that the major cause of soil erosion was hurricanes or rainfall and only 14 % of respondents identified human activities as causes of erosion. Forty-two percent of respondents indicated that the responsibility for solving soil erosion problems lies with government, as opposed to 26 % indicating that the community is responsible. More than half of respondents believed that reforestation is a viable option for reducing soil erosion, but only a third of respondents were currently applying reforestation practices and another one-third indicated that they were not following any conservation practices. The KAP results were used to assess the overall level of knowledge and interest in soil erosion problems and their solutions by compiling negative responses. The community of Barrio Vicente Guerrero may be most vulnerable to soil erosion, since it had the highest average negative response and the second highest soil erosion rate. However, Poblado Cambil had the highest estimated soil erosion rate and a relatively low average negative response rate, suggesting that soil conservation efforts should be prioritized for this community. We conclude that as long as the economic and productive needs of the communities are not solved simultaneously, the risk of soil erosion will increase in the future, which threatens the survival of these communities.


2019 ◽  
Vol 8 (1) ◽  
pp. 87-91
Author(s):  
Bhanu Priya Chouhan ◽  
Monika Kannan

The world is undergoing the largest wave of urban growth in history. More than half of the world’s population now lives in towns and cities, and by 2030 this number will swell to about 5 billion. ‘Urbanization has the potential to usher in a new era of wellbeing, resource efficiency and economic growth. But due to increased population the pressure of demand also increases in urban areas’ (Drakakis-Smith, David, 1996). The loss of agricultural land to other land uses occasioned by urban growth is an issue of growing concern worldwide, particularly in the developing countries like India. This paper is an attempt to assess the impact of urbanization on land use and land cover patterns in Ajmer city. Recent trends indicate that the rural urban migration and religious significance of the place attracting thousands of tourists every year, have immensely contributed in the increasing population of city and is causing change in land use patterns. This accelerating urban sprawl has led to shrinking of the agricultural land and land holdings. Due to increased rate of urbanization, the agricultural areas have been transformed into residential and industrial areas (Retnaraj D,1994). There are several key factors which cause increase in population here such as Smart City Projects, potential for employment, higher education, more comfortable and quality housing, better health facilities, high living standard etc. Population pressure not only directly increases the demand for food, but also indirectly reduces its supply through building development, environmental degradation and marginalization of food production (Aldington T, 1997). Also, there are several issues which are associated with continuous increase in population i.e. land degradation, pollution, poverty, slums, unaffordable housing etc. Pollution, formulation of slums, transportation congestion, environmental hazards, land degradation and crime are some of the major impacts of urbanization on Ajmer city. This study involves mapping of land use patterns by analyzing data and satellite imagery taken at different time periods. The satellite images of year 2000 and 2017 are used. The change detection techniques are used with the help of Geographical Information System software like ERDAS and ArcGIS. The supervised classification of all the three satellite images is done by ERDAS software to demarcate and analyze land use change.


2021 ◽  
Vol 7 ◽  
Author(s):  
Maha J. Cziesielski ◽  
Carlos M. Duarte ◽  
Nojood Aalismail ◽  
Yousef Al-Hafedh ◽  
Andrea Anton ◽  
...  

For millennia, coastal and marine ecosystems have adapted and flourished in the Red Sea’s unique environment. Surrounded by deserts on all sides, the Red Sea is subjected to high dust inputs and receives very little freshwater input, and so harbors a high salinity. Coral reefs, seagrass meadows, and mangroves flourish in this environment and provide socio-economic and environmental benefits to the bordering coastlines and countries. Interestingly, while coral reef ecosystems are currently experiencing rapid decline on a global scale, those in the Red Sea appear to be in relatively better shape. That said, they are certainly not immune to the stressors that cause degradation, such as increasing ocean temperature, acidification and pollution. In many regions, ecosystems are already severely deteriorating and are further threatened by increasing population pressure and large coastal development projects. Degradation of these marine habitats will lead to environmental costs, as well as significant economic losses. Therefore, it will result in a missed opportunity for the bordering countries to develop a sustainable blue economy and integrate innovative nature-based solutions. Recognizing that securing the Red Sea ecosystems’ future must occur in synergy with continued social and economic growth, we developed an action plan for the conservation, restoration, and growth of marine environments of the Red Sea. We then investigated the level of resources for financial and economic investment that may incentivize these activities. This study presents a set of commercially viable financial investment strategies, ecological innovations, and sustainable development opportunities, which can, if implemented strategically, help ensure long-term economic benefits while promoting environmental conservation. We make a case for investing in blue natural capital and propose a strategic development model that relies on maintaining the health of natural ecosystems to safeguard the Red Sea’s sustainable development.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Veera Narayana Balabathina ◽  
R. P. Raju ◽  
Wuletaw Mulualem ◽  
Gedefaw Tadele

Abstract Background Soil erosion is one of the major environmental challenges and has a significant impact on potential land productivity and food security in many highland regions of Ethiopia. Quantifying and identifying the spatial patterns of soil erosion is important for management. The present study aims to estimate soil erosion by water in the Northern catchment of Lake Tana basin in the NW highlands of Ethiopia. The estimations are based on available data through the application of the Universal Soil Loss Equation integrated with Geographic Information System and remote sensing technologies. The study further explored the effects of land use and land cover, topography, soil erodibility, and drainage density on soil erosion rate in the catchment. Results The total estimated soil loss in the catchment was 1,705,370 tons per year and the mean erosion rate was 37.89 t ha−1 year−1, with a standard deviation of 59.2 t ha−1 year−1. The average annual soil erosion rare for the sub-catchments Derma, Megech, Gumara, Garno, and Gabi Kura were estimated at 46.8, 40.9, 30.9, 30.0, and 29.7 t ha−1 year−1, respectively. Based on estimated erosion rates in the catchment, the grid cells were divided into five different erosion severity classes: very low, low, moderate, high and extreme. The soil erosion severity map showed about 58.9% of the area was in very low erosion potential (0–1 t ha−1 year−1) that contributes only 1.1% of the total soil loss, while 12.4% of the areas (36,617 ha) were in high and extreme erosion potential with erosion rates of 10 t ha−1 year−1 or more that contributed about 82.1% of the total soil loss in the catchment which should be a high priority. Areas with high to extreme erosion severity classes were mostly found in Megech, Gumero and Garno sub-catchments. Results of Multiple linear regression analysis showed a relationship between soil erosion rate (A) and USLE factors that soil erosion rate was most sensitive to the topographic factor (LS) followed by the support practice (P), soil erodibility (K), crop management (C) and rainfall erosivity factor (R). Barenland showed the most severe erosion, followed by croplands and plantation forests in the catchment. Conclusions Use of the erosion severity classes coupled with various individual factors can help to understand the primary processes affecting erosion and spatial patterns in the catchment. This could be used for the site-specific implementation of effective soil conservation practices and land use plans targeted in erosion-prone locations to control soil erosion.


2019 ◽  
Vol 17 (10) ◽  
Author(s):  
Faradiella Mohd Kusin ◽  
Amirul Azuan Md Joni ◽  
Ferdaus Mohamat Yusuff ◽  
Sharifah Nur Munirah Syed Hasan

Key community-based environmental conservation programmes in Kong Kong Laut, Johor include the river and mangrove ecosystem conservation and management programme. The overall aim of conserving the ecosystem and encouraging local community participation in the programme is to promote the existing eco-tourism potential of the area. This paper entails the outcomes of community-based activities aimed at building the capacities of local communities through community mobilisation, awareness creation and capacity building (i.e. transferred knowledge and skills). Findings indicate that there have been improvements in the river water quality status within the ecosystems over the course of a one-year project, despite relatively small participation among the local communities in the conservation programme. However, it was evident that active participation from a minority group of the local community has contributed to significant human and social capital, suggesting that community empowerment might be crucial for future development. Despite this, a school outreach programme on waste minimisation within the community demonstrated an encouraging level of participation among school children and teachers. The major challenge to maintaining continuous efforts to conserve their environment is the simultaneous developments taking place close to the river and mangrove ecosystems. While it remains a challenge to all the stakeholders, collaborative efforts among the local communities and the university, school, government agencies and private sector have made it possible to strategise for more future approaches that will benefit the whole community.


2019 ◽  
Vol 26 (2) ◽  
pp. 67-70
Author(s):  
Kapil Joshi ◽  
◽  
Vrushali Gade ◽  
Ashwini Apet ◽  
◽  
...  

Food insecurity and poverty have been affecting the livelihood of the rural poor since ages. It is posing a major challenge to the sustainable development of a developing country like India. In such countries, land and soil degradation has emerged as an offshoot of excessive population pressure over the limited resources. Agricultural production in the developing countries has seldom matched the needs of the people. Agro forestry has the potential to arrest land degradation and improve site productivity through interaction with trees, soil, crops and livestock. Agro forestry is also a potential option for improving rural livelihood and enhancing integrated management of the natural resource base. Agro forestry systems can play an important role in carbon mitigation programmes through carbon sequestration and can reduce the pressure on existing natural forests by providing fuel, fodder, timber and wood products to the farmers. The current interest in agro forestry in India has transformed the land-use system in terms of economic sustainability. This article briefly reviews about the concept of Poplar and Bamboo based agro forestry systems as adopted extensively by the farmers on a commercial and environmental conservation scale. These systems play a significant role to meet the economic, social and environmental concerns of the villagers.


2018 ◽  
Author(s):  
Roman A. DiBiase

Abstract. Interpreting catchment-mean erosion rate from in situ produced cosmogenic 10Be concentration in stream sands requires calculating the catchment-mean 10Be surface production rate and effective mass attenuation length, both of which can vary locally due to topographic shielding and slope effects. The most common method for calculating topographic shielding accounts only for the effect of shielding at the surface, leading to catchment-mean corrections of up to 20 % in steep landscapes, and makes the simplifying assumption that the effective mass attenuation length for a given nuclide production mechanism is spatially uniform. Here I evaluate the validity of this assumption using a simplified catchment geometry to calculate the spatial variation in surface skyline shielding, effective mass attenuation length, and the total effective shielding factor for catchments with mean slopes ranging from 0° to 80°. For flat catchments (i.e., uniform elevation of bounding ridgelines), the increase in effective attenuation length as a function of hillslope angle and skyline shielding leads to a catchment-mean total effective shielding factor of one, implying that no topographic shielding factor is needed when calculating catchment-mean vertical erosion rates. For dipping catchments (as characterized by a plane fit to the bounding ridgelines), the catchment-mean total effective shielding factor is also one, except for cases of extremely steep range-front catchments, where the shielding correction is counterintuitively greater than one. These results indicate that in most cases, topographic shielding corrections are inappropriate for calculating catchment-mean erosion rates, and only needed for steep catchments with non-uniform distribution of quartz and/or erosion rate. By accounting only for shielding of surface production, existing shielding approaches introduce a slope-dependent systematic error that could lead to spurious interpretations of relationships between topography and erosion rate.


Author(s):  
Karsun Karsun ◽  
I Nyoman Merit ◽  
I Wayan Suarna

Telagawaja Sub-Watershed is upper part watershed of Unda Watershed. As upper watershed, Telagawaja sub watershed has functions as conservation area, water catchment area, and managed in order to keep sub watershed environment not degradated. This research objectives are to identify the characteristics of the land, the function of the area, and the erosion potential rate (TBE), as well as land management recommendations on Telagawaja Sub-Watershed. The identification of land is conducted by analyzing the characteristics of thematic maps in study area. The directives of classification land function is determined by the Minister of Agriculture Number.837/Kpts/Um/ 11/1980 and Number: 683/Kpts/Um/8/1981. The prediction of actual erosion is calculated by USLE formula for the agriculture area, while non-agricultural land use is applied Snyder formula (1980) in Asdak (2010). Erosion class and erosion rate (TBE) are determined based on the Director General of Reforestation and Land Rehabilitation Department of Forestry Number.041/Kpts/V/1998. Determination for the amount of erosion is still can be allowed using the method of Thompson (1957) in Arsyad (2010) which based on soil properties attached to Telagawaja sub watershed. The research shows that Telagawaja Sub-Watershed characteristic is an area which is susceptible to erosion.The analysis shows that the direction of the area function Telagawaja sub-watershed consists of an area of 7337.28 Ha of protection forest (66.01%), and the function of a buffer area 3.778.31 Ha (33.99%). The result of the study on Telagawaja sub-watershed erosion is 2777.07 tonnes ha-1year-1. Erosion class and erosion rate of Telagawaja Sub-Watershed vary from very light to very severe. Erosion class and erosion rate (TBE) with category severe to very severe consist an area of 2.071,97 ha (18,64 %) from total sub-watershed area. Land use planning implemented by applying alternative measures of soil and water conservation can reduce the rate of erosion of 2777.07 tonnes ha-1year-1 to 611.00 tonnes ha-1year-1 or less 2166.07 tonnes ha- 1year-1.


Sign in / Sign up

Export Citation Format

Share Document