Influence of the Self-Heating Temperature on the Cyclic Durability of Composite Materials

Author(s):  
Б. А. Бондарев ◽  
П. В. Комаров ◽  
А. В. Ерофеев ◽  
В. А. Баязов

Постановка задачи. Для определения выносливости полимерных композиционных материалов используют различные методы ускоренных испытаний. Одним из таких методов является температурный, который имеет свои ограничения применения. Это подразумевает необходимость установления возможности его применения для эпоксидных полимерных материалов. Результаты. Предложена формула для определения величины усталостной долговечности эпоксидного композиционного материала, опытным путем установлена достоверность величин, рассчитываемых по данной формуле. Доказано, что интенсивность роста температуры зависит от скорости загружения. Выводы. Достоверность расчетов по предложенной формуле для расчета показателей усталостной долговечности подтверждена сравнением результатов с опытными данными, значения достаточно близко коррелируют, что позволяет применять эту формулу при расчете выносливости для образцов из эпоксидного композита. Statement of the problem. Various methods of accelerated testing are used to determine the endurance of polymer composite materials. One of these methods is the temperature method which has its own limitations of application. Thus the possibility of its application for epoxy polymer materials should be established. Results. The article proposes a formula for identifying the value of the fatigue life of an epoxy composite material. The reliability of the values calculated using this formula is experimentally established. It is proved that the intensity of the temperature increase depends on the loading speed. Conclusions. The reliability of the calculations according to the proposed formula for calculating the fatigue life indicators is confirmed by comparing the results with experimental data, the values are quite closely correlated, which allows us to use this formula when calculating the endurance for samples made of epoxy composite.

The main methods (pressing and winding) of the processing of hybrid polymer composites to obtain items were examined. Advantages and disadvantages of the methods were noted. Good combinations of different-module fibers (carbon, glass, boron, organic) in hybrid polymer materials are described, which allow one to prepare materials with high compression strength on the one hand, and to increase fracture energy of samples and impact toughness on the other hand.


2021 ◽  
Vol 5 (3) ◽  
pp. 76
Author(s):  
Ho Sung Kim ◽  
Saijie Huang

S-N curve characterisation and prediction of remaining fatigue life are studied using polyethylene terephthalate glycol-modified (PETG). A new simple method for finding a data point at the lowest number of cycles for the Kim and Zhang S-N curve model is proposed to avoid the arbitrary choice of loading rate for tensile testing. It was demonstrated that the arbitrary choice of loading rate may likely lead to an erroneous characterisation for the prediction of the remaining fatigue life. The previously proposed theoretical method for predicting the remaining fatigue life of composite materials involving the damage function was verified at a stress ratio of 0.4 for the first time. Both high to low and low to high loadings were conducted for predicting the remaining fatigue lives and a good agreement between predictions and experimental results was found. Fatigue damage consisting of cracks and whitening is described.


2021 ◽  
pp. 002199832098804
Author(s):  
TP Mohan ◽  
K Kanny

The objective of this work is to realize new polymer composite material containing high amount of natural fibers as a bio-based reinforcement phase. Short banana fiber is chosen as a reinforcement material and epoxy polymer as a matrix material. About 77 wt.% of banana fibers were reinforced in the epoxy polymer matrix composite, using pressure induced fiber dipping method. Nanoclay particles were infused into the banana fibers to improve the fiber matrix interface properties. The nanoclay infused banana fiber were used to reinforce epoxy composite and its properties were compared with untreated banana fiber reinforced epoxy composite and banana fiber reinforced epoxy filled with nanoclay matrix composite. The surface characteristics of these composites were examined by electron microscope and the result shows well dispersed fibers in epoxy matrix. Thermal (thermogravimetry analysis and dynamic mechanical analysis), mechanical (tensile and fiber pullout) and water barrier properties of these composites were examined and the result showed that the nanoclay infused banana fiber reinforced epoxy composite shows better and improved properties. Improved surface finish composite was also obtained by this processing technique.


2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


Sign in / Sign up

Export Citation Format

Share Document