scholarly journals TECHNOLOGICAL FEATURES OF THE DISPERSE REINFORCEMENT OF FINE-GRAINED CONCRETE WITH FIBERS OF DIFFERENT MATERIALS

Author(s):  
Al'bina Baranova ◽  
Margarita Badenikova ◽  
Anna Bobrova ◽  
Kristina Rudyh

The article presents the technological features of the disperse reinforcement of finegrained concrete fiber reinforcement, made of different materials.

2020 ◽  
Vol 299 ◽  
pp. 227-234
Author(s):  
Valentina Anatolyevna Poluektova

The construction concrete printing requires new approaches at reinforcement performing. Only successful integration of the existing reinforcement systems will provide for the opportunity to design concrete structures and make objects with the help of additive technologies. The paper dwells upon the issues of possibilities and the efficiency of disperse reinforcement with basalt fibers. It presents a composition of a composite material for 3D printing of a type of fine-grained fibrous concretes with the required technological properties: a necessary plasticity and a high plastic strength for printing large-dimensioned items and structures without timbering by means of extrusion with a high material adhesion between the layers and controlled setting periods. The author studied a possibility to reclaim basalt fiber production wastes as a high-disperse fibrous filler for the reinforcement of polymer-modified concretes. The article provides the dependence of plastic strength on the fiber content in concrete. The authors consider the influence of components and the mechanism of modifying disperse particles of basalt fibrous concrete at obtaining the material for 3D printing. The obtained polymer-modified basal fibrous concrete has a good impact resistance, low water absorption and high crack resistance.


2021 ◽  
Vol 21 (6) ◽  
pp. 239-245
Author(s):  
Young-Man Cha ◽  
Ki-Young Eum ◽  
Ja-Yeon Kim ◽  
KookHwan Cho

The roadbed reinforcement method using cuboidal fiber reinforcement is an eco-friendly method that compensates for the shortcomings of various existing roadbed reinforcement technologies. A rectangular parallelepiped fiber reinforcement was installed in section oo of the existing line where fine-grained gravel, floating sleepers, and sleeper cracks occurred. The basic physical property test of the upper subgrade was conducted, and the vertical displacement and acceleration of rails and sleepers were compared and analyzed according to the train operation of the reinforced and non-reinforced sections. A comparative analysis of the vertical displacement and acceleration according to train operation after laying the rectangular parallelepiped fiber reinforcement demonstrated that the vertical displacement and acceleration were reduced by up to 84% and 80%, respectively. The dynamic movement of the rail was reduced owing to the reinforcing effect of the rectangular parallelepiped reinforcement, thereby improving the roadbed bearing capacity and stability.


2021 ◽  
Vol 11 (19) ◽  
pp. 8850
Author(s):  
Leonid Dvorkin ◽  
Oleh Bordiuzhenko ◽  
Biruk Hailu Tekle ◽  
Yuri Ribakov

Combining different fiber types may improve the mechanical properties of fiber reinforced concrete. The present study is focused on investigating hybrid fiber reinforced concrete (HFRC) with steel and basalt fiber. Mechanical properties of fiber reinforced fine-grained concrete are investigated. The results demonstrate that using optimal steel and basalt fiber reinforcement ratios avoids concrete mixtures’ segregation and improves their homogeneity. Concrete with hybrid steel and basalt fiber reinforcement has higher strength. Effective methodology for proper design of HFRC compositions was proposed. It is based on the mathematical experiments planning method. The proposed method enables optimal mix proportioning of high-strength fine-grained concrete with hybrid steel and basalt fiber reinforcement.


2021 ◽  
Vol 264 ◽  
pp. 02030
Author(s):  
Leonid Dvorkin ◽  
Oleh Bordiuzhenko ◽  
Vadim Zhitkovsky ◽  
Svyatoslav Gomon ◽  
Sviatoslav Homon

Adding different fiber types may yield improvement of steel fiber reinforced concrete (SFRC) features. Therefore, the investigation of hybrid fiber reinforced concrete (HFRC) mechanical properties is relevant. The effect of adding hybrid steel and basalt fiber on the mechanical properties of fine-grained concrete is studied. It is shown that hybrid fiber reinforcement using optimal steel and basalt fiber ratio allows preventing concrete mixtures' segregation and improving their structure homogeneity. This, in turn, allows achieving higher concrete strength values. In most cases, the design of such concrete compositions is based on engineering experience that limits the designers' capabilities. Therefore, an effective methodology for proper HFRC composition design should be developed. The present study is focused on developing such a methodology. The developed methodology includes using the mathematical experiments planning method to design optimal composition of high-strength fine-grained fiber reinforced concrete with hybrid steel and basalt fiber reinforcement. It is demonstrated that the proposed method can be effectively used for the design of optimal compositions of HFRC.


Author(s):  
Richard S. Chemock

One of the most common tasks in a typical analysis lab is the recording of images. Many analytical techniques (TEM, SEM, and metallography for example) produce images as their primary output. Until recently, the most common method of recording images was by using film. Current PS/2R systems offer very large capacity data storage devices and high resolution displays, making it practical to work with analytical images on PS/2s, thereby sidestepping the traditional film and darkroom steps. This change in operational mode offers many benefits: cost savings, throughput, archiving and searching capabilities as well as direct incorporation of the image data into reports.The conventional way to record images involves film, either sheet film (with its associated wet chemistry) for TEM or PolaroidR film for SEM and light microscopy. Although film is inconvenient, it does have the highest quality of all available image recording techniques. The fine grained film used for TEM has a resolution that would exceed a 4096x4096x16 bit digital image.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


Author(s):  
C. P. Doğan ◽  
R. D. Wilson ◽  
J. A. Hawk

Capacitor Discharge Welding is a rapid solidification technique for joining conductive materials that results in a narrow fusion zone and almost no heat affected zone. As a result, the microstructures and properties of the bulk materials are essentially continuous across the weld interface. During the joining process, one of the materials to be joined acts as the anode and the other acts as the cathode. The anode and cathode are brought together with a concomitant discharge of a capacitor bank, creating an arc which melts the materials at the joining surfaces and welds them together (Fig. 1). As the electrodes impact, the arc is extinguished, and the molten interface cools at rates that can exceed 106 K/s. This process results in reduced porosity in the fusion zone, a fine-grained weldment, and a reduced tendency for hot cracking.At the U.S. Bureau of Mines, we are currently examining the possibilities of using capacitor discharge welding to join dissimilar metals, metals to intermetallics, and metals to conductive ceramics. In this particular study, we will examine the microstructural characteristics of iron-aluminum welds in detail, focussing our attention primarily on interfaces produced during the rapid solidification process.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


Sign in / Sign up

Export Citation Format

Share Document