Study of structure and properties of steel 38KhN3МFА after low-temperature liquid borating

2020 ◽  
pp. 309-313
Author(s):  
S.G. Tsikh ◽  
A.A. Krasulya ◽  
A.S. Pomel’nikova

The effect of low-temperature liquid borating on the structure and hardness of steel 38KhN3МFА is studied. It is found that in the borating process at temperature 600...660 °C and duration 8...32 hours boride coating with thickness of 6...19 μm with surface hardness of 1900...2000 HV is formed on the steel surface. The optimal borating regimes are determined, in which hardened layer with solid core is formed. The presence of two boride phases FeB and Fe2B in the boride layer is established by metallographic, X-ray and electron microscopic analyzes.

1982 ◽  
Vol 20 ◽  
Author(s):  
R. Moret ◽  
R. Comes ◽  
G. Furdin ◽  
H. Fuzellier ◽  
F. Rousseaux

ABSTRACTIn α-C5n-HNO3 the condensation of the room-temperature liquid-like diffuse ring associated with the disorder-order transition around 250 K is studied and the low-temperature. superstructure is examined.It is found that β-C8n-HNO3 exhibits an in-plane incommensurate order at room temperature.Two types of graphite-Br2 are found. Low-temperature phase transitions in C8Br are observed at T1 ≍ 277 K and T2 ≍ 297 K. The room-temperature structure of C14Br is reexamined. Special attention is given to diffuse scattering and incommensurability.


1968 ◽  
Vol 10 (10) ◽  
pp. 802-803
Author(s):  
V. A. Belyanin ◽  
V. K. Tomas

2022 ◽  
Vol 12 (1) ◽  
pp. 469
Author(s):  
Kateryna Kostyk ◽  
Ivan Kuric ◽  
Milan Saga ◽  
Viktoriia Kostyk ◽  
Vitalii Ivanov ◽  
...  

The relevant problem is searching for up-to-date methods to improve tools and machine parts’ performance due to the hardening of surface layers. This article shows that, after the magnetic-pulse treatment of bearing steel Cr15, its surface microhardness was increased by 40–50% compared to baseline. In this case, the depth of the hardened layer was 0.08–0.1 mm. The magnetic-pulse processing of hard alloys reduces the coefficient of microhardness variation from 0.13 to 0.06. A decrease in the coefficient of variation of wear resistance from 0.48 to 0.27 indicates the increased stability of physical and mechanical properties. The nitriding of alloy steels was accelerated 10-fold that of traditional gas upon receipt of the hardened layer depth of 0.3–0.5 mm. As a result, the surface hardness was increased to 12.7 GPa. Boriding in the nano-dispersed powder was accelerated 2–3-fold compared to existing technologies while ensuring surface hardness up to 21–23 GPa with a boride layer thickness of up to 0.073 mm. Experimental data showed that the cutting tool equipped with inserts from WC92Co8 and WC79TiC15 has a resistance relative to the untreated WC92Co8 higher by 183% and WC85TiC6Co9—than 200%. Depending on alloy steel, nitriding allowed us to raise wear resistance by 120–177%, boriding—by 180–340%, and magneto-pulse treatment—by more than 183–200%.


2017 ◽  
Vol 11 (6) ◽  
pp. 915-924 ◽  
Author(s):  
Shoichi Kikuchi ◽  
Yuki Nakamura ◽  
Koichiro Nambu ◽  
Toshikazu Akahori ◽  
◽  
...  

Fine particle peening (FPP) using hydroxyapatite (HAp) shot particles can form a HAp layer on room-temperature substrates by the transfer and microstructural modification of the shot particles. In this study, FPP with HAp shot particles was applied to form a HAp surface layer and improve the fatigue properties of Ti–6Al–4V extra-low interstitial (ELI) for use in bio-implants. The surface microstructures of the FPP-treated specimens were characterized by micro-Vickers hardness testing, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. FPP with HAp shot particles successfully formed a HAp layer on the surface of Ti–6Al–4V ELI in a relatively short period by shot particle transfer at room temperature; however, the thickness and elemental composition of the HAp layer were independent of the FPP treatment time. The original HAp crystal structure remained in the surface-modified layer formed on Ti–6Al–4V ELI after FPP. Furthermore, FPP increased the surface hardness and generated compressive residual stresses at the treated surface of Ti–6Al–4V ELI. Four-point bending fatigue tests were performed at stress ratios of 0.1 and 0.5 to examine the effect of FPP with HAp shot particles on the fatigue properties of Ti–6Al–4V ELI. The fatigue life of the FPP-treated specimen was longer than that of the un-peened specimen because of the formation of a work-hardened layer with compressive residual stress. However, no clear improvement in the fatigue limit of Ti–6Al–4V ELI occurred after FPP with HAp shot particles because of subsurface failures from characteristic facets.


2011 ◽  
Vol 214 ◽  
pp. 564-568 ◽  
Author(s):  
Shao Mei Zheng ◽  
Cheng Zhao

Plasma carburizing of AISI 316L austenitic stainless steel was carried out at low temperature to improve the surface hardness without degradation of its corrosion resistance. The microstructure, surface hardness, phase composition and corrosion property of the hardened layer were analyzed. The experimental results show that high-quality hardened layers can be produced at the carburizing temperatures between 673 K and 773 K, which have not only high surface hardness and wear resistance, but also good corrosion resistance. All of the hardened layers display a precipitation-free structure or Sc phase. The chromium carbides began to precipitate in the hardened layer as soon as the carburizing temperature is higher than 823 K. The precipitation of chromium carbides will lead to deterioration in corrosion resistance of the hardened stainless steel.


2009 ◽  
Vol 283-286 ◽  
pp. 401-405 ◽  
Author(s):  
H. Yilmazer ◽  
S. Yilmaz ◽  
M.E. Acma

In order to improve the poor surface hardness and the wear resistance, titanium has been nitrided with plasma (ion) nitriding which is one of the methods to treat surface properties of titanium alloys. The increment at surface hardness and so the wear resistance of nitrided titanium alloys has been provided by means of compound layer (ε-Ti2N+δ-TiN) and diffusion zone (α-Ti) occurred by plasma ion nitriding. The goal of the present paper is to investigate effects of nitriding temperature and nitriding time on the microstructure and hardness value of nitrided surface layers. A systematic study was undertaken with specimens of commercial pure Ti and Ti-6Al-4V alloy. As treatment parameters, we have used; nitriding time (from 2 to 9 hour), nitriding atmosphere (H2-80%N2), total pressure (1 kPa) and cathode temperature (from 600 to 800 oC). The Vickers indenter was used for analysis of the micro hardness measurements. The thin hardened layer at the nitrided surface was characterized by glancing-angle X-ray difractometer. X-ray diffraction analysis has confirmed the formation of ε-Ti2N and δ-TiN phases on the nitrided specimens. Experimental details and characterization of plasma (ion) nitrided titanium have reported and discussed.


Author(s):  
S. W. Hui ◽  
T. P. Stewart

Direct electron microscopic study of biological molecules has been hampered by such factors as radiation damage, lack of contrast and vacuum drying. In certain cases, however, the difficulties may be overcome by using redundent structural information from repeating units and by various specimen preservation methods. With bilayers of phospholipids in which both the solid and fluid phases co-exist, the ordering of the hydrocarbon chains may be utilized to form diffraction contrast images. Domains of different molecular packings may be recgnizable by placing properly chosen filters in the diffraction plane. These domains would correspond to those observed by freeze fracture, if certain distinctive undulating patterns are associated with certain molecular packing, as suggested by X-ray diffraction studies. By using an environmental stage, we were able to directly observe these domains in bilayers of mixed phospholipids at various temperatures at which their phases change from misible to inmissible states.


Author(s):  
S. Edith Taylor ◽  
Patrick Echlin ◽  
May McKoon ◽  
Thomas L. Hayes

Low temperature x-ray microanalysis (LTXM) of solid biological materials has been documented for Lemna minor L. root tips. This discussion will be limited to a demonstration of LTXM for measuring relative elemental distributions of P,S,Cl and K species within whole cells of tobacco leaves.Mature Wisconsin-38 tobacco was grown in the greenhouse at the University of California, Berkeley and picked daily from the mid-stalk position (leaf #9). The tissue was excised from the right of the mid rib and rapidly frozen in liquid nitrogen slush. It was then placed into an Amray biochamber and maintained at 103K. Fracture faces of the tissue were prepared and carbon-coated in the biochamber. The prepared sample was transferred from the biochamber to the Amray 1000A SEM equipped with a cold stage to maintain low temperatures at 103K. Analyses were performed using a tungsten source with accelerating voltages of 17.5 to 20 KV and beam currents from 1-2nA.


Author(s):  
P. Echlin ◽  
M. McKoon ◽  
E.S. Taylor ◽  
C.E. Thomas ◽  
K.L. Maloney ◽  
...  

Although sections of frozen salt solutions have been used as standards for x-ray microanalysis, such solutions are less useful when analysed in the bulk form. They are poor thermal and electrical conductors and severe phase separation occurs during the cooling process. Following a suggestion by Whitecross et al we have made up a series of salt solutions containing a small amount of graphite to improve the sample conductivity. In addition, we have incorporated a polymer to ensure the formation of microcrystalline ice and a consequent homogenity of salt dispersion within the frozen matrix. The mixtures have been used to standardize the analytical procedures applied to frozen hydrated bulk specimens based on the peak/background analytical method and to measure the absolute concentration of elements in developing roots.


Sign in / Sign up

Export Citation Format

Share Document