scholarly journals Mucosal immune system: the regulatory action of probiotics

2015 ◽  
Vol 12 (5) ◽  
pp. 17-30
Author(s):  
N G Astafieva ◽  
I V Gamova ◽  
E N Udovitchenko ◽  
I A Perfilova ◽  
D Y Kobzev ◽  
...  

The evidence of the beneficial effects of dairy products on the intestinal microflora was given for the first time in 1908 by I.I. Mechnikov in the famous article «A few words about the sour milk». Since that time probiotics - the living microorganisms for regulation of intestinal microbiota are the case of interest. Interactions between the probiotics and macroorganism are very complex and include a network of genes receptors, signaling molecules and a variety of other factors that determine the natural course of the disease.

Author(s):  
Alexander Viktorovich Zhestkov ◽  
Olga Olegovna Pobezhimova

Particular attention is paid to atopic dermatitis (AD) as one of the earliest and most frequent clinical manifestations of allergy in children. AD is a multifactorial disease, the development of which is closely related to genetic defects in the immune response and adverse environmental influences. It was found that the action of these factors determines the rate of development of AD, especially in young children. One of these factors is a violation of the intestinal microbiota, which plays an essential role in the development of the child's immune system and has a protective effect in the formation of atopy. It has been shown that 80-95% of patients with AD have intestinal dysbiosis, while, along with a deficiency of lactobacilli and bifidobacteria, there is an excessive growth of Staphilococcus. The use of modern molecular genetics technologies made it possible to obtain a fairly complete understanding of the number, genetic heterogeneity and complexity of the bacterial components of the intestinal microbiota, while clinical studies have shown the importance of its interactions with the host organism in the formation of various forms of pathology. It has been established that the human intestinal microbiota is an evolutionary set of microorganisms that exists as a balanced microecological system in which the symbiotic microflora is in dynamic equilibrium, forms microbial associations that occupy a certain ecological niche in it, and is one of the most important factors affecting human health. The gut microbiota plays an important role in the pathogenesis of atopic dermatitis, which causes immunosuppression, but the exact mechanism of its action is still unclear. It is widely known that probiotics act on the immune system. These are living microorganisms with immunomodulatory effects that stimulate Th1 cytokines and suppress Th2 responses, which are being investigated for the treatment of several diseases. The most commonly used probiotics are part of the intestinal microflora such as lactobacilli, bifidobacteria and enterococci. The purpose of this article: to systematize the information available today on the influence of the composition of the intestinal microflora on the immunopathogenesis of atopic dermatitis.


2021 ◽  
Vol 19 (3) ◽  
pp. 58-68
Author(s):  
A.I. Khavkin ◽  
◽  
T.A. Kovtun ◽  
D.V. Makarkin ◽  
O.B. Fedotova ◽  
...  

One of the main strategies for preventing chronic diseases is a balanced diet from early childhood, with the inclusion of functional ingredients: dietary fiber, vitamins and vitamin-like compounds, minerals, polyunsaturated fatty acids, prebiotics and probiotics. A combined enrichment of fermented dairy products with prebiotics and probiotics contributes to the summation of their positive effective influence. Adding prebiotics and probiotics to the diet leads to the change in the intestinal microbiota composition towards a more balanced structure, thereby increasing the intestinal barrier function and the formation of optimal immune interactions. The most commonly used in human nutrition is a combination of bifidobacteria or lactobacilli with fructo-oligosaccharides in synbiotic products. It is important that the microorganisms are safe, stable in storage and able to survive in the gastrointestinal tract. The use of probiotic fermented dairy products has a positive impact on child health: it has anti-infectious and immunomodulatory effects, helps to normalize the gastrointestinal motility. These statements are confirmed by controlled studies in which children aged 8 to 18 months, recovering from acute respiratory disease, for which antibiotic therapy was prescribed, included in the diet drinking yoghurts enriched with Bifidobacterium lactis BB12 and inulin for 3 months. The inclusion of yoghurts in the children’s diet helped to normalize the intestinal microbiota composition after antibiotic therapy, as well as to strengthen the immune system by stimulating the synthesis of protective factors – secretory immunoglobulin A and lysozyme. Key words: fermented dairy products, child nutrition, probiotics, prebiotics, synbiotics, inulin, microbiota, functional foods, immune system, Bifidobacterium lactis BB12


2010 ◽  
Vol 90 (2) ◽  
pp. 129-136 ◽  
Author(s):  
M. Lewis ◽  
C F Inman ◽  
M. Bailey

The intestinal microbiota is a dynamic multifaceted ecosystem which has evolved a complex and mutually beneficial relationship with the mammalian host. The contribution to host fitness is evident, but in recent years it has become apparent that these commensal microorganisms may exert far more influence over health and disease than previously thought. The gut microbiota are implicated in many aspects of biological function, such as metabolism, angiogenesis and immune development: disruption, especially during the neonatal period, which may impose life-long penalty. Elimination of the microbiota appears difficult, but manipulation of the ratios and dominance of composite populations can be achieved by alterations in diet, rearing environment, antibiotics and/or probiotics. Components of the intestinal microbiota are frequently documented to affect normal function of the mucosal immune system in experimental animals and in domesticated, agricultural species. However, it is not always clear that the effects described are sufficiently well understood to provide a sound basis for commercial intervention. Some microbial interventions may be beneficial to the host under particular circumstances, while detrimental during others. It is essential that we further our understanding of the complex and intricate host-commensal relationship to avoid causing more long-term damage than advantage.Key words: Postnatal immune development, microbiota manipulation


2020 ◽  
Author(s):  
Narges Dargahi ◽  
Joshua Johnson ◽  
Vasso Apostolopoulos

ABSTRACTIngesting probiotics contributes to the development of a healthy microflora in the gastrointestinal tract with established benefits to human health. Some of these beneficial effects may be through modulating of the immune system and probiotics have become more common in the treatment of many inflammatory and immune disorders. We demonstrate a range of immune modulating effects of Streptococcus thermophilus by human monocytes, including, decreased mRNA expression of IL-1R, IL-18, IFNγR1, IFNαR1, CCL2, CCR5, TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-8, CD14, CD86, CD4, ITGAM, LYZ, TYK2, IFNR1, IRAK-1, NOD2, MYD88, ITGAM, SLC11A1, and, increased expression of IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-23, IFNγ, TNFα, CSF-2. Routine administration of Streptococcus thermophilus in fermented dairy products, and their consumption may be beneficial to the treatment/management of inflammatory and autoimmune diseases.


2020 ◽  
pp. 135-144
Author(s):  
E. Yu. Plotnikova ◽  
Yu. V. Zakharova

Today, there is an explosion of discoveries related to a growing understanding of the role of microbial communities, key species of bacteria, products or metabolites derived from commensals, and in particular the relationship between some of these components and painful conditions in humans. Microbiota plays a fundamental role in the induction, training and functioning of the host’s immune system. In turn, the immune system has evolved significantly as a means of maintaining the host’s symbiotic relations with these very diverse and developing microbes. At optimal performance, this alliance of the immune system and microbiota allows to induce protective reactions to pathogens and maintain regulatory pathways involved in maintaining tolerance to harmless antigens. In this review, we outline the role of the intestinal microbiota in the immune system, starting with initial information supporting further insights into the effects of intestinal microbiota dysbacteriosis on the host’s susceptibility to infection. Probiotics are considered a good form of therapy to control harmful intestinal microorganisms, improve digestion and the absorption of nutrients. The beneficial effects of probiotics have been demonstrated in many diseases. One of the main mechanisms of probiotics is the regulation of the immune response of the host. The article reviews and discusses the regulatory role of probiotics in the “intestine-lungs” system and the immune system of mucous membranes for potential antiviral mechanisms. The unique role of probiotics in modulation of intestinal microbes and establishment of intestinal homeostasis and production of interferon as antiviral mechanism is described. In addition, the regulatory role of probiotics in the system «intestine-lungs» and the immune system of the mucous membranes for potential antiviral mechanisms, including in COVID-19 is considered and discussed. Symbiotic products Bac-Set® Forte and Bac-Set® Cold/Flu are described.


Biologics ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 396-415
Author(s):  
Narges Dargahi ◽  
Joshua C. Johnson ◽  
Vasso Apostolopoulos

Ingesting probiotics contributes to the development of a healthy microflora in the GIT with established benefits to human health. Some of these beneficial effects may be through the modulation of the immune system. In addition, probiotics have become more common in the treatment of many inflammatory and immune disorders. Here, we demonstrate a range of immune modulating effects of Streptococcus thermophilus by human monocytes, including decreased mRNA expression of IL-1R, IL-18, IFNαR1, IFNγR1, CCL2, CCR5, TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-8, CD14, CD86, CD4, ITGAM, LYZ, TYK2, IFNR1, IRAK-1, NOD2, MYD88, SLC11A1, and increased expression of IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-23, IFNγ, TNFα, CSF-2. The routine administration of Streptococcus thermophilus in fermented dairy products and their consumption may be beneficial to the treatment/management of inflammatory and autoimmune diseases.


2017 ◽  
Vol 57 (2) ◽  
pp. 262 ◽  
Author(s):  
Weijiang Zheng ◽  
Xun Zhang ◽  
Wen Yao

Equol is an end metabolite of daidzein produced by the intestinal microbiota, exhibiting stronger antioxidant and estrogenic activities. It has been proposed that the beneficial effects of soybean/phytoestrogens may be dependent on the intestinal equol-producing ability, i.e. the equol hypothesis. The ‘equol hypothesis’ has been well applied to human clinical studies. However, the information of equol-producing ability in sows is quite limited. In this study, the individual differences and correlation between equol excretion and intestinal microbiota in large white sows were assayed. The results showed faecal equol levels of 0.14–17.85 μg/g (coefficient of variation: 61.22%) and urinary equol levels of 0.53–8.19 μg/mL (coefficient of variation: 54.72%). The levels of equol and daidzein correlated positively in both urine and faeces (P < 0.05). The levels of daidzein and ratio of equol : daidzein in both faeces and urine were significantly higher than equol status (P < 0.01). Cluster analysis of denatured gradient gel electrophoresis patterns showed that faecal samples with similar equol concentrations had similar microbial composition. The Shannon diversity and bands number in gel was significant negatively correlative with faecal equol status (P < 0.001). The population of total bacteria, Firmicutes and Bacteroidetes correlated negatively with faecal equol production (P < 0.05). Positive correlations were found between urinary equol production and the population of bacteroidetes and methanogen-producing bacteria (P < 0.05), demonstrating for the first time the relationship between equol excretions and gut interspecies H2 transfer in sows.


2021 ◽  
Vol 8 ◽  
Author(s):  
Asa M. Gore ◽  
Ebenezer Satyaraj ◽  
Jeff Labuda ◽  
Robyn Engler ◽  
Peichuan Sun ◽  
...  

In its early life a kitten faces many significant events including separation from its mother, re-homing and vaccination. The kitten is also slowly adapting to their post-weaning diet. Recent advances in companion animal nutrition have indicated that functional ingredients such as colostrum can help support the immune system and gastrointestinal health. Here we report for the first time the effect of feeding a diet containing 0.1% spray dried bovine colostrum (BC) to growing kittens on gut-associated lymphoid (GALT) tissue responses, systemic immune responses, and on intestinal microbiota stability. BC supplementation induced increased faecal IgA expression, and a faster and stronger antibody response to a rabies vaccine booster, indicative of better localised and systemic immune function, respectively. BC supplementation also helped to maintain kittens' intestinal microbiota stability in the face of a mildly challenging life event. These results show that BC supplementation can help strengthen the immune system and enhance the gut microbiota stability of growing kittens.


2020 ◽  
Vol 21 (15) ◽  
pp. 1603-1615
Author(s):  
Eva Alvarez-Vieites ◽  
Arora López-Santamarina ◽  
José M. Miranda ◽  
Alicia del Carmen Mondragón ◽  
Alexandre Lamas ◽  
...  

In recent decades, there has been a very rapid increase in the prevalence of diabetes globally, with serious health and economic implications. Although today there are several therapeutic treatments for this disease, these do not address the causes of the disease and have serious side effects, so it is necessary to seek new treatments to replace or complement the existing ones. Among these complementary treatments, a strong link between the intestinal microbiota and diabetes has been demonstrated, which has focused attention on the use of biotherapy to regulate the function of the intestinal microbiota and, thus, treat diabetes. In this way, the main objective of this work is to provide a review of the latest scientific evidence on diabetes, gathering information about new trends in its management, and especially, the influence of the intestinal microbiota and microbiome on this pathology. It is possible to conclude that the relationship between the intestinal microbiota and diabetes is carried out through alterations in energy metabolism, the immune system, changes in intestinal permeability, and a state of low-intensity systemic inflammation. Although, currently, most of the experimental work, using probiotics for diabetes management, has been done on experimental animals, the results obtained are promising. Thus, the modification of the microbiota through biotherapy has shown to improve the symptoms and severity of diabetes through various mechanisms related to these alterations.


Sign in / Sign up

Export Citation Format

Share Document