scholarly journals Bionic arm: Mapping of elbow and wrist flexion using neural network and fuzzy logic

2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Aiswarya Lakshmi M ◽  
◽  
Anjan Kumar Dash ◽  

Cases on limb amputation necessitate the use of Transhumeral bionic for artificial limb rehabilitation, which is controlled using Electromyographic (EMG) signals from the muscles. Before the implementation of EMG control, a mapping between the movements of an arm to the angle formed at the corresponding joints is essential to be made. Most of the works in the field of Bionics use Supervised Machine Learning models, chiefly Classification, to map muscle flexion signals to joint actuations in the bionic arm. Ample literature is also there, which uses fuzzy logic for mapping. However, there are very few literatures that compare these two methods of mapping. In this article, 2 models have been discussed regarding the mapping, and their effectiveness is compared. The first model captures elbow and wrist flexion and maps them to their respective angular displacements of joints using a fuzzy logic model. In the second model, a Pattern Recognition Artificial Neural Network (ANN) model under Supervised Machine Learning is incorporated to map elbow and wrist flexion to the corresponding joint angular displacement. The ANN is trained with elbow and wrist joint flexion values and its corresponding joint angles data, optimized, and tested in real-time. This model is verified by comparing the joint angles of a test person (measured using Goniometers) with the joint angles of Bionic models made (using a 360° protractor sheet). The second model gave the insight that supervised machine learning models provide an accurate mapping to the joint flexion in the field of bionics.

2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


Author(s):  
Mert Gülçür ◽  
Ben Whiteside

AbstractThis paper discusses micromanufacturing process quality proxies called “process fingerprints” in micro-injection moulding for establishing in-line quality assurance and machine learning models for Industry 4.0 applications. Process fingerprints that we present in this study are purely physical proxies of the product quality and need tangible rationale regarding their selection criteria such as sensitivity, cost-effectiveness, and robustness. Proposed methods and selection reasons for process fingerprints are also justified by analysing the temporally collected data with respect to the microreplication efficiency. Extracted process fingerprints were also used in a multiple linear regression scenario where they bring actionable insights for creating traceable and cost-effective supervised machine learning models in challenging micro-injection moulding environments. Multiple linear regression model demonstrated %84 accuracy in predicting the quality of the process, which is significant as far as the extreme process conditions and product features are concerned.


2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Sajad Yousefi

Introduction: Heart disease is often associated with conditions such as clogged arteries due to the sediment accumulation which causes chest pain and heart attack. Many people die due to the heart disease annually. Most countries have a shortage of cardiovascular specialists and thus, a significant percentage of misdiagnosis occurs. Hence, predicting this disease is a serious issue. Using machine learning models performed on multidimensional dataset, this article aims to find the most efficient and accurate machine learning models for disease prediction.Material and Methods: Several algorithms were utilized to predict heart disease among which Decision Tree, Random Forest and KNN supervised machine learning are highly mentioned. The algorithms are applied to the dataset taken from the UCI repository including 294 samples. The dataset includes heart disease features. To enhance the algorithm performance, these features are analyzed, the feature importance scores and cross validation are considered.Results: The algorithm performance is compared with each other, so that performance based on ROC curve and some criteria such as accuracy, precision, sensitivity and F1 score were evaluated for each model. As a result of evaluation, Accuracy, AUC ROC are 83% and 99% respectively for Decision Tree algorithm. Logistic Regression algorithm with accuracy and AUC ROC are 88% and 91% respectively has better performance than other algorithms. Therefore, these techniques can be useful for physicians to predict heart disease patients and prescribe them correctly.Conclusion: Machine learning technique can be used in medicine for analyzing the related data collections to a disease and its prediction. The area under the ROC curve and evaluating criteria related to a number of classifying algorithms of machine learning to evaluate heart disease and indeed, the prediction of heart disease is compared to determine the most appropriate classification. As a result of evaluation, better performance was observed in both Decision Tree and Logistic Regression models.


2021 ◽  
Author(s):  
Munirul M. Haque ◽  
Masud Rabbani ◽  
Dipranjan Das Dipal ◽  
Md Ishrak Islam Zarif ◽  
Anik Iqbal ◽  
...  

BACKGROUND Care for children with autism spectrum disorder (ASD) can be challenging for families and medical care systems. This is especially true in Low-and-Middle-Income-countries (LMIC) like Bangladesh. To improve family-practitioner communication and developmental monitoring of children with ASD, [spell out] (mCARE) was developed. Within this study, mCARE was used to track child milestone achievement and family socio-demographic assets to inform mCARE feasibility/scalability and family-asset informed practitioner recommendations. OBJECTIVE The objectives of this paper are three-fold. First, document how mCARE can be used to monitor child milestone achievement. Second, demonstrate how advanced machine learning models can inform our understanding of milestone achievement in children with ASD. Third, describe family/child socio-demographic factors that are associated with earlier milestone achievement in children with ASD (across five machine learning models). METHODS Using mCARE collected data, this study assessed milestone achievement in 300 children with ASD from Bangladesh. In this study, we used four supervised machine learning (ML) algorithms (Decision Tree, Logistic Regression, k-Nearest Neighbors, Artificial Neural Network) and one unsupervised machine learning (K-means Clustering) to build models of milestone achievement based on family/child socio-demographic details. For analyses, the sample was randomly divided in half to train the ML models and then their accuracy was estimated based on the other half of the sample. Each model was specified for the following milestones: Brushes teeth, Asks to use the toilet, Urinates in the toilet or potty, and Buttons large buttons. RESULTS This study aimed to find a suitable machine learning algorithm for milestone prediction/achievement for children with ASD using family/child socio-demographic characteristics. For, Brushes teeth, the three supervised machine learning models met or exceeded an accuracy of 95% with Logistic Regression, KNN, and ANN as the most robust socio-demographic predictors. For Asks to use toilet, 84.00% accuracy was achieved with the KNN and ANN models. For these models, the family socio-demographic predictors of “family expenditure” and “parents’ age” accounted for most of the model variability. The last two parameters, Urinates in toilet or potty and Buttons large buttons had an accuracy of 91.00% and 76.00%, respectively, in ANN. Overall, the ANN had a higher accuracy (Above ~80% on average) among the other algorithms for all the parameters. Across the models and milestones, “family expenditure”, “family size/ type”, “living places” and “parent’s age and occupation” were the most influential family/child socio-demographic factors. CONCLUSIONS mCARE was successfully deployed in an LMIC (i.e., Bangladesh), allowing parents and care-practitioners a mechanism to share detailed information on child milestones achievement. Using advanced modeling techniques this study demonstrates how family/child socio-demographic elements can inform child milestone achievement. Specifically, families with fewer socio-demographic resources reported later milestone attainment. Developmental science theories highlight how family/systems can directly influence child development and this study provides a clear link between family resources and child developmental progress. Clinical implications for this work could include supporting the larger family system to improve child milestone achievement. CLINICALTRIAL We took the IRB from Marquette University Institutional Review Board on July 9, 2020, with the protocol number HR-1803022959, and titled “MOBILE-BASED CARE FOR CHILDREN WITH AUTISM SPECTRUM DISORDER USING REMOTE EXPERIENCE SAMPLING METHOD (MCARE)” for recruiting a total of 316 subjects, of which we recruited 300. (Details description of participants in Methods section)


2021 ◽  
Author(s):  
Mohammed Ayub ◽  
SanLinn Kaka

Abstract Manual first-break picking from a large volume of seismic data is extremely tedious and costly. Deployment of machine learning models makes the process fast and cost effective. However, these machine learning models require high representative and effective features for accurate automatic picking. Therefore, First- Break (FB) picking classification model that uses effective minimum number of features and promises performance efficiency is proposed. The variants of Recurrent Neural Networks (RNNs) such as Long ShortTerm Memory (LSTM) and Gated Recurrent Unit (GRU) can retain contextual information from long previous time steps. We deploy this advantage for FB picking as seismic traces are amplitude values of vibration along the time-axis. We use behavioral fluctuation of amplitude as input features for LSTM and GRU. The models are trained on noisy data and tested for generalization on original traces not seen during the training and validation process. In order to analyze the real-time suitability, the performance is benchmarked using accuracy, F1-measure and three other established metrics. We have trained two RNN models and two deep Neural Network models for FB classification using only amplitude values as features. Both LSTM and GRU have the accuracy and F1-measure with a score of 94.20%. With the same features, Convolutional Neural Network (CNN) has an accuracy of 93.58% and F1-score of 93.63%. Again, Deep Neural Network (DNN) model has scores of 92.83% and 92.59% as accuracy and F1-measure, respectively. From the pexperiment results, we see significant superior performance of LSTM and GRU to CNN and DNN when used the same features. For robustness of LSTM and GRU models, the performance is compared with DNN model that is trained using nine features derived from seismic traces and observed that the performance superiority of RNN models. Therefore, it is safe to conclude that RNN models (LSTM and GRU) are capable of classifying the FB events efficiently even by using a minimum number of features that are not computationally expensive. The novelty of our work is the capability of automatic FB classification with the RNN models that incorporate contextual behavioral information without the need for sophisticated feature extraction or engineering techniques that in turn can help in reducing the cost and fostering classification model robust and faster.


2020 ◽  
Vol 36 (3) ◽  
pp. 1166-1187 ◽  
Author(s):  
Shohei Naito ◽  
Hiromitsu Tomozawa ◽  
Yuji Mori ◽  
Takeshi Nagata ◽  
Naokazu Monma ◽  
...  

This article presents a method for detecting damaged buildings in the event of an earthquake using machine learning models and aerial photographs. We initially created training data for machine learning models using aerial photographs captured around the town of Mashiki immediately after the main shock of the 2016 Kumamoto earthquake. All buildings are classified into one of the four damage levels by visual interpretation. Subsequently, two damage discrimination models are developed: a bag-of-visual-words model and a model based on a convolutional neural network. Results are compared and validated in terms of accuracy, revealing that the latter model is preferable. Moreover, for the convolutional neural network model, the target areas are expanded and the recalls of damage classification at the four levels range approximately from 66% to 81%.


2018 ◽  
Vol 8 (12) ◽  
pp. 2663 ◽  
Author(s):  
Davy Preuveneers ◽  
Vera Rimmer ◽  
Ilias Tsingenopoulos ◽  
Jan Spooren ◽  
Wouter Joosen ◽  
...  

The adoption of machine learning and deep learning is on the rise in the cybersecurity domain where these AI methods help strengthen traditional system monitoring and threat detection solutions. However, adversaries too are becoming more effective in concealing malicious behavior amongst large amounts of benign behavior data. To address the increasing time-to-detection of these stealthy attacks, interconnected and federated learning systems can improve the detection of malicious behavior by joining forces and pooling together monitoring data. The major challenge that we address in this work is that in a federated learning setup, an adversary has many more opportunities to poison one of the local machine learning models with malicious training samples, thereby influencing the outcome of the federated learning and evading detection. We present a solution where contributing parties in federated learning can be held accountable and have their model updates audited. We describe a permissioned blockchain-based federated learning method where incremental updates to an anomaly detection machine learning model are chained together on the distributed ledger. By integrating federated learning with blockchain technology, our solution supports the auditing of machine learning models without the necessity to centralize the training data. Experiments with a realistic intrusion detection use case and an autoencoder for anomaly detection illustrate that the increased complexity caused by blockchain technology has a limited performance impact on the federated learning, varying between 5 and 15%, while providing full transparency over the distributed training process of the neural network. Furthermore, our blockchain-based federated learning solution can be generalized and applied to more sophisticated neural network architectures and other use cases.


Sign in / Sign up

Export Citation Format

Share Document