scholarly journals DETEKSI SENYAWA METABOLIT SEKUNDER JAMUR ENDOFIT DARI AKAR TANAMAN KARET (Hevea brasiliensis)

2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Widya Lestari

Endophytic fungi are a group of fungi whose part or whole life is in living plant tissue and usually does not harm the host. Endophytic fungi generally produce secondary metabolites that have beneficial biological activities such as anti-cancer compounds, antifungi or antibacterials. Control of plant diseases caused by Rigidoporus microporus and Ganoderma boninense can be done by using biological agents, namely by using endophytic fungi. This fungus has metabolite compounds that can inhibit the growth of Rigidoporus microporus and Ganoderma boninense. This study aims to determine what content is found in endophytic mushroom extracts isolated from rubber plants (Hevea brasiliensis). Endophytic fungi are extracted by maceration using methanol and ethyl acetate solvents. The extract was tested for antifungal activity using diffusion method. The content of secondary metabolites was tested by phytochemical test. The results of endophytic fungal extraction with methanol and ethyl acetate solvents resulted in antifungal activity with inhibitory zones in a row namely WL01: 2.19 and 2.15 mm Fungi Isolates on Ganoderma boninense while 3.09 mm WL02 against Rigidoporus microporus Based on the phytochemical test results, endophytic fungal extract with methanol and ethyl acetate solvents showed the presence of alkaloid, flavonoid, phenol and saponin. Keywords: endofit, fungi, hevea, secondary metabolites

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 379 ◽  
Author(s):  
Dhurva Prasad Gauchan ◽  
Pratistha Kandel ◽  
Astha Tuladhar ◽  
Ashesh Acharya ◽  
Upendra Kadel ◽  
...  

Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study, Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera: Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and Daldinia. The ethyl acetate extracts isolated from three endophytic fungi: Alternaria alternata, Cladosporium cladosporioides and Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of C. cladosporioides and A. brassicae also showed promising antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis with a minimum inhibitory concentration of 250μg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes: A. alternata, C. cladosporioides and A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.


Author(s):  
Shirly Kumala ◽  
Ng Vini Aprilia ◽  
Partomuan Simanjuntak

Objective: Colletotrichium capsici endophytic fungi isolated from Jamblang plant (Eugenia cumini  L).  The secondary metabolites of this plant has the potent antibacterial efficacy  as well as diarrheal and anti-diabetic. This research focussed on isolation of the endophytic microbes from branches of Jamblang plants and their secondary metabolites.Methods: Isolation of endophytes were performed in PDA(potato dextrose agar) using direct seed plant. Endophytic fungi isolates with strongest antimicrobial activity against the bacteria Staphylococcus aureus, Escherichia coli were fermented in Potato Dextrose Yeast (PDY) to produce  large scale of the metabolites.  Supernatant was extracted with ethyl acetate solvent. Ethyl acetate extract fractionated by column chromatography (SiO3, n-hexane- ethyl acetate = 50:1 ~ 1:1) and obtained three fractions. Further, agar diffusion method was performed to assess their anti-microbial activity.Results:  Antibacterial  test  results  indicated that fraction III had  the antibacterial  activity Staphylococcus aureus with  inhibition zone diameter  of 10.7 mm but no observed antibacterial activity against Escherichia coli.  Furthermore, identification  by GC-MS showed that compounds present in fraction III was mainly fatty acid and phenolic compounds.Conclusion:  In conclusion, secondary metabolites isolated from Jamblang plants branches contained predominantly fatty acid and phenol related compounds that could be responsible for its potent anti microbial activity. Keywords : Endophytic fungi, Jamblang (Eugenia cumini L.), antimicrobial activity


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 379
Author(s):  
Dhurva Prasad Gauchan ◽  
Pratistha Kandel ◽  
Astha Tuladhar ◽  
Ashesh Acharya ◽  
Upendra Kadel ◽  
...  

Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study, Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera: Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and Daldinia. The ethyl acetate extracts isolated from three endophytic fungi: Alternaria alternata, Cladosporium cladosporioides and Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of C. cladosporioides and A. brassicae also showed promising antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis with a minimum inhibitory concentration of 250μg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes: A. alternata, C. cladosporioides and A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.


2019 ◽  
Vol 23 (2) ◽  
pp. 185
Author(s):  
Fitri Widiantini ◽  
Mia Rahmah Qadryani ◽  
Fuji Hartati ◽  
Endah Yulia

Blast disease caused by Pyricularia oryzae Cav. is one of the most important diseases on rice. One of the alternative controlling methods in P. oryzae is biological control through the utilization of secondary metabolites produced by endophytic bacteria. The study aimed to determine the antifungal potency of secondary metabolites produced by rice endophytic bacteria against P. oryzae. The experiment was conducted using 9 endophytic bacteria isolated rice (Os1, Os2, Os3, Os4, Os5, Os6, Os7, Os8, and Os10). Each isolates were grown in ISP2 liquid media and the secondary metabolites compounds were extracted using two different solvents; methanol and ethyl acetate : methanol (4:1) (v/v). The effect of secondary metabolites was tested using agar well diffusion method. The results demonstrated that the secondary metabolites extracted by both solvents have antifungal effect on the growth of P. oryzae. The highest growth inhibition was shown by secondary metabolites extracted by ethyl acetate : methanol (4:1) from Os1 (42%) and Os3 (39%). Antifungal activity of the secondary metabolites was indicated by the formation of clear zone. HPLC (High Performance Liquid Chromatography) analysis showed the differences of peaks and retention time between secondary metabolites produced by Os1 and Os3 which has antifungal activity and secondary metabolites produced by Os10 that did not show the antifungal activity.


2020 ◽  
Vol 27 (11) ◽  
pp. 1836-1854 ◽  
Author(s):  
Elena Ancheeva ◽  
Georgios Daletos ◽  
Peter Proksch

Background: Endophytes represent a complex community of microorganisms colonizing asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally believed to be produced only by their host plants. Objective: The present review provides an overview of secondary metabolites from endophytic fungi with pronounced biological activities covering the literature between 2010 and 2017. Special focus is given on studies aiming at exploration of the mode of action of these metabolites towards the discovery of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic fungi as alternative sources of bioactive “plant metabolites”. Results: Over the past few years, several promising lead structures from endophytic fungi have been described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities, primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be highly selective or to possess novel mechanisms of action, which hold great promises as potential drug candidates. Conclusion: Endophytes represent an inexhaustible reservoir of pharmacologically important compounds. Moreover, endophytic fungi could be exploited for the sustainable production of bioactive “plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host plant interactions and origin of endophytic fungal genes would be of utmost importance.


2021 ◽  
Vol 13 (1) ◽  
pp. 106-112
Author(s):  
Sri Kasmiyati ◽  
Elizabeth Betty Elok Kristiani ◽  
Maria Marina Herawati ◽  
Andreas Binar Aji Sukmana

The medicinal plant-derived bioactive compounds have a potential for many biological activities, including antimicrobial activity. Artemisia cina is a medicinal plant from the Compositae family with the potential of having antitumor, antifungal, and antibacterial activity. This study aimed to determine the antibacterial activity and the flavonoid content of A. Cina’s ethyl acetate extract. Plants samples were extracted by ethyl acetate maceration method. Antibacterial activity was tested against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) by a disk diffusion method using 25, 50, and 100 mg/l extract concentrations. The flavonoid contents (quercetin and kaempferol) were measured using High-Performance Liquid Chromatography. The extracts of diploid and polyploid A. cina displayed some antibacterial activity, with the Gram-negative bacteria being more resistant than the Gram-positive counterpart. However, no significant difference was observed between the diploid and polyploid extracts. As for the flavonoid content, the highest quercetin content (0.5501 mg/ml) was found in the polyploid A. cina (J), while the highest kaempferol content (0.5818 mg/ml) was observed in the diploid A. cina (KJT). Although A. cina is widely grown in Indonesia, compared to other Artemisia species, A. cina has not been widely studied, especially its antibacterial  potential and in related to its flavonoid content and the use of ethyl acetate as the extraction solvent.  This study reveals the potential of A. cina as a natural antibacterial agent. 


2016 ◽  
Vol 6 (01) ◽  
pp. 1494 ◽  
Author(s):  
Ananda Danagoudar ◽  
Chandrashekhar G. Joshi* ◽  
M.T. Nivya ◽  
H.M. Manjunath ◽  
Jagadeesha Poyya ◽  
...  

Endophytic fungi are one of the untapped resources of therapeutic compounds for various diseases. The present study focused on the antimicrobial as well as larvicidal activity of ethyl acetate extract of endophytic fungi isolated from Tragia involucrata. The ethyl acetate extract of Penicillium citrinum CGJ-C1 (GenBank No.KT780618), Penicillium citrinum CGJ-C2 (KP739821), Cladosporium sp. (KP739822), and Cryptendoxyla hypophloia CGJ-D2 (KT780619) was subjected to antimicrobial activity against a panel of microorganisms by disc diffusion method, larvicidal activity against Culex quinquefasciatus. All the extracts showed significant antimicrobial activity against the tested organisms ranging from 8±0.32 to 13±2.11. The extent of activity was comparable to the standard drugs. The larvicidal potential of the endophytes was superior to T.involucrata extract. The larvicidal activity was found to be dose and time dependent with LC50 value ranging from 4.25- 158.06ppm after 24hrs of treatment. This is the first report on the bioactivity of the endophytes isolated from T.involucrata. Further studies on the bio-guided isolation of lead compound will benefit the people suffering from microbe’s related diseases.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (04) ◽  
pp. 37-41
Author(s):  
S. M Pawaskar ◽  
◽  
K. C. Sasangan

The present study was undertaken to evaluate in vitro antimicrobial activity of the successive leaf extracts of Cynodon dactylon in petroleum ether, ethyl acetate, acetone, ethanol, methanol and water, against various gram positive & gram negative bacterial strains using zone of inhibition. Both Agar well diffusion method & Agar disc diffusion method were used to evaluate the antibacterial efficacy. The microorganisms used in the test were – Escherichia coli, Proteus vulgaris, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhi, Salmonella paratyphi A, Salmonella paratyphi B, Bacillus subtilis, Streptococcus pyogenes, Vibrio cholerac and Enterobacter aerogenes. Two fungal strains - Candida albicans and Saccharomyces cerevisiae were also tested to evaluate the antifungal potential of the said plant extract. The reference antibiotics chloramphenicol & ampicillin (antibacterial); nystatin & clotrimazole and (antifungal) were also tested against these standard microorganisms used in the assay and the results were compared with that of the plant extracts.The results of the study revealed that all the seven successive extracts of the leaf powder of Cynodon dactylon ( L.) Pers. exhibited prominent antimicrobial and antifungal activity against all microorganisms used in the study. The nonpolar extracts i.e. petroleum ether, ethyl acetate and acetone showed the most significant antibacterial and antifungal activity against all tested organisms. The petroleum ether and ethyl acetate extracts showing maximum inhibition in the range of 8 mm - 15 mm. This was closely followed by, acetone extract, which showed the inhibition in the range of 9 mm - 13 mm.


Author(s):  
Kamana Sahani ◽  
DEEPENDRA THAKUR

Objective: The objective of the present investigation was to perform the Gas Chromatography-mass spectrometry (GCMS) analysis of endophytic fungi Curvularia aeria MTCC-12847 isolated from Tribulus terrestris L. to find out the active compound present in the extract. Methods: The endophytic fungi were isolated from the plant Tribulus Terrestris L., leaf which was cultivated in optimized media for the production of secondary metabolites and was extracted using ethyl acetate. Ethyl acetate extract was used for the Gas Chromatography-mass spectrometry (GCMS) analysis. Results: GC-MS analysis of ethyl acetate extract of endophytic fungi revealed the presence of various secondary metabolites, the highest amount present was Palmitic acid (24.54%) and Lowest was Dimethyl 1-phenyl-7-methyl-1-hydroxy-1,4-dihydronaphthalene-2,3-dicarboxylate (5.76%). Conclusion: The endophytic fungal Curvularia aeria MTCC-12847 extract isolated from the Tribulus terrestris L. shows the presence of various bioactive compounds.


Sign in / Sign up

Export Citation Format

Share Document