Methodology of Modernization Research in Traditional Chinese Medicine Based on Systems Biology and Network Biology

2009 ◽  
Vol 7 (4) ◽  
pp. 249-259 ◽  
Author(s):  
Shi-Kai YAN ◽  
Jing ZHAO ◽  
Sheng-Shan DOU ◽  
Peng JIANG ◽  
Run-Hui LIU ◽  
...  
2011 ◽  
Vol 39 (5) ◽  
pp. 1348-1352 ◽  
Author(s):  
Xuan Liu ◽  
De-An Guo

Systems biology is considered to be the possible technology that could bring breakthroughs in the study of TCM (traditional Chinese medicine). Proteomics, as one of the major components of systems biology, has been used in the mechanistic study of TCM, providing some interesting results. In the present paper, we review the current application of proteomics in the mechanistic study of TCM. Proteomics technologies and strategies that might be used in the future to improve study of TCM are also discussed.


2012 ◽  
Vol 40 (06) ◽  
pp. 1109-1122 ◽  
Author(s):  
Xijun Wang ◽  
Aihua Zhang ◽  
Hui Sun ◽  
Ping Wang

Traditional Chinese medicine (TCM), an alternative medicine, focuses on the treatment of human disease via the integrity of the close relationship between body and syndrome analysis. It remains a form of primary care in most Asian countries and its characteristics showcase the great advantages of personalized medicine. Although this approach to disease diagnosis, prognosis and treatment has served the medical establishment well for thousands of years, it has serious shortcomings in the era of modern medicine that stem from its reliance on reductionist principles of experimentation and analysis. In this way, systems biology offers the potential to personalize medicine, facilitating the provision of the right care to the right patient at the right time. We expect that systems biology will have a major impact on future personalized therapeutic approaches which herald the future of medicine. Here we summarize current trends and critically review the potential limitations and future prospects of such treatments. Some characteristic examples are presented to highlight the application of this groundbreaking platform to personalized TCM as well as some of the necessary milestones for moving systems biology of a state-of-the-art nature into mainstream health care.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Aihua Zhang ◽  
Hui Sun ◽  
Shi Qiu ◽  
Xijun Wang

Traditional Chinese medicine (TCM) formula has been playing a very important role in health protection and disease control for thousands of years. Guided by TCM syndrome theories, formula are designed to contain a combination of various kinds of crude drugs that, when combined, will achieve synergistic efficacy. However, the precise mechanism of synergistic action remains poorly understood. One example is a famous TCM formula Yinchenhao Tang (YCHT), whose efficacy in treating hepatic injury (HI) and Jaundice syndrome, has recently been well established as a case study. We also conducted a systematic analysis of synergistic effects of the principal compound using biochemistry, pharmacokinetics and systems biology, to explore the key molecular mechanisms. We had found that the three component (6,7-dimethylesculetin (D), geniposide (G), and rhein (R)) combination exerts a more robust synergistic effect than any one or two of the three individual compounds by hitting multiple targets. They can regulate molecular networks through activating both intrinsic and extrinsic pathways to synergistically cause intensified therapeutic effects. This paper provides an overview of the recent and potential developments of chemical fingerprinting coupled with systems biology advancing drug discovery towards more agile development of targeted combination therapies for the YCHT.


2010 ◽  
Vol 6 (4) ◽  
pp. 613 ◽  
Author(s):  
Tao Ma ◽  
Conge Tan ◽  
Hui Zhang ◽  
Miqu Wang ◽  
Weijun Ding ◽  
...  

2013 ◽  
Vol 7 (3) ◽  
pp. 277-279 ◽  
Author(s):  
Ping Liu ◽  
Songlin Liu ◽  
Gang Chen ◽  
Ping Wang

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Hsin-Chieh Tang ◽  
Calvin Yu-Chian Chen

One has found an important cell cycle controller. This guard can decide the cell cycle toward proliferation or quiescence. Cyclin-dependent kinase 2 (CDK2) is a unique target among the CDK family in melanoma therapy. We attempted to find out TCM compounds from TCM Database@Taiwan that have the ability to inhibit the activity of CDK2 by systems biology. We selected Tetrahydropalmatine, Reserpiline, and (+)-Corydaline as the candidates by docking and screening results for further survey. We utilized support vector machine (SVM), multiple linear regression (MLR) models and Bayesian network for validation of predicted activity. By overall analysis of docking results, predicted activity, and molecular dynamics (MD) simulation, we could conclude that Tetrahydropalmatine, Reserpiline, and (+)-Corydaline had better binding affinity than the control. All of them had the ability to inhibit the activity of CDK2 and might have the opportunity to be applied in melanoma therapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-23 ◽  
Author(s):  
Ming Yang ◽  
Jia-Lei Chen ◽  
Li-Wen Xu ◽  
Guang Ji

The concept of “network target” has ushered in a new era in the field of traditional Chinese medicine (TCM). As a new research approach, network pharmacology is based on the analysis of network models and systems biology. Taking advantage of advancements in systems biology, a high degree of integration data analysis strategy and interpretable visualization provides deeper insights into the underlying mechanisms of TCM theories, including the principles of herb combination, biological foundations of herb or herbal formulae action, and molecular basis of TCM syndromes. In this study, we review several recent developments in TCM network pharmacology research and discuss their potential for bridging the gap between traditional and modern medicine. We briefly summarize the two main functional applications of TCM network models: understanding/uncovering and predicting/discovering. In particular, we focus on how TCM network pharmacology research is conducted and highlight different computational tools, such as network-based and machine learning algorithms, and sources that have been proposed and applied to the different steps involved in the research process. To make network pharmacology research commonplace, some basic network definitions and analysis methods are presented.


2019 ◽  
Vol 14 (3) ◽  
pp. 200-210 ◽  
Author(s):  
Lin Liu ◽  
Hao Wang

Background:Traditional Chinese Medicine (TCM) is widely utilized as complementary health care in China whose acceptance is still hindered by conventional scientific research methodology, although it has been exercised and implemented for nearly 2000 years. Identifying the molecular mechanisms, targets and bioactive components in TCM is a critical step in the modernization of TCM because of the complexity and uniqueness of the TCM system. With recent advances in computational approaches and high throughput technologies, it has become possible to understand the potential TCM mechanisms at the molecular and systematic level, to evaluate the effectiveness and toxicity of TCM treatments. Bioinformatics is gaining considerable attention to unearth the in-depth molecular mechanisms of TCM, which emerges as an interdisciplinary approach owing to the explosive omics data and development of computer science. Systems biology, based on the omics techniques, opens up a new perspective which enables us to investigate the holistic modulation effect on the body.Objective:This review aims to sum up the recent efforts of bioinformatics and omics techniques in the research of TCM including Systems biology, Metabolomics, Proteomics, Genomics and Transcriptomics.Conclusion:Overall, bioinformatics tools combined with omics techniques have been extensively used to scientifically support the ancient practice of TCM to be scientific and international through the acquisition, storage and analysis of biomedical data.


Sign in / Sign up

Export Citation Format

Share Document