Influence of Substrate Temperature on the Morphology, Composition and Growth Rate of SiC Films Deposited by PECVD

2013 ◽  
Vol 28 (2) ◽  
pp. 201-206
Author(s):  
Fang-Li YU ◽  
YU BAI ◽  
Yi QIN ◽  
Dong YUE ◽  
Cai-Jun LUO ◽  
...  
2011 ◽  
Vol 519 (21) ◽  
pp. 7556-7559 ◽  
Author(s):  
J. Schaffner ◽  
E. Feldmeier ◽  
A. Swirschuk ◽  
H.-J. Schimper ◽  
A. Klein ◽  
...  

2009 ◽  
Vol 311 (10) ◽  
pp. 2992-2995 ◽  
Author(s):  
Shigeya Naritsuka ◽  
Midori Mori ◽  
Yoshitaka Takeuchi ◽  
Takahiro Maruyama

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 978
Author(s):  
Ming-Jie Zhao ◽  
Zhi-Xuan Zhang ◽  
Chia-Hsun Hsu ◽  
Xiao-Ying Zhang ◽  
Wan-Yu Wu ◽  
...  

Indium oxide (In2O3) film has excellent optical and electrical properties, which makes it useful for a multitude of applications. The preparation of In2O3 film via atomic layer deposition (ALD) method remains an issue as most of the available In-precursors are inactive and thermally unstable. In this work, In2O3 film was prepared by ALD using a remote O2 plasma as oxidant, which provides highly reactive oxygen radicals, and hence significantly enhancing the film growth. The substrate temperature that determines the adsorption state on the substrate and reaction energy of the precursor was investigated. At low substrate temperature (100–150 °C), the ratio of chemically adsorbed precursors is low, leading to a low growth rate and amorphous structure of the films. An amorphous-to-crystalline transition was observed at 150–200 °C. An ALD window with self-limiting reaction and a reasonable film growth rate was observed in the intermediate temperature range of 225–275 °C. At high substrate temperature (300–350 °C), the film growth rate further increases due to the decomposition of the precursors. The resulting film exhibits a rough surface which consists of coarse grains and obvious grain boundaries. The growth mode and properties of the In2O3 films prepared by plasma-enhanced ALD can be efficiently tuned by varying the substrate temperature.


2009 ◽  
Vol 39 (1) ◽  
pp. 64-75 ◽  
Author(s):  
Lu-Min Vaario ◽  
Arja Tervonen ◽  
Kati Haukioja ◽  
Markku Haukioja ◽  
Taina Pennanen ◽  
...  

Over a 5 year period, we examined the influence of substrate and fertilization on nursery growth and outplanting performance of Norway spruce (Picea abies (L.) Karst.). We focused on the relative growth and development of roots and shoots and the colonization intensity and diversity of ectomycorrhizal (ECM) fungi. In the nursery, a conventional substrate (low-humified Sphagnum peat) supplemented with woody material (wood fibre and pine bark) and either mineral or organic fertilizers yielded shorter seedlings than those grown on the unmodified substrate. However, after outplanting, the growth rate of seedlings cultivated on modified substrates was higher than that of seedlings grown on the unmodified substrate. Seedlings cultivated in modified substrates had significantly higher root/shoot ratios and ECM diversity; the latter remained significant after ≥3 years of outplanting. Seedlings grown on a substrate containing 50% woody material and supplemented with organic fertilizer had the highest growth rate among all seedlings during the 3 year period of outplanting. Colonization intensity of ECM fungi was high in all seedlings except for those grown in heavily fertilized substrate. This study suggests that nursery techniques that produce seedlings with higher root/shoot ratios and ECM diversities could improve plantation success and growth rate for at least the first 3 years of outplanting.


2012 ◽  
Vol 727-728 ◽  
pp. 691-696 ◽  
Author(s):  
Tiago Falcade ◽  
Giselle Barbosa de Oliveira ◽  
Diego Pereira Tarragó ◽  
Vânia Caldas de Sousa ◽  
Célia de Fraga Malfatti

Many studies have been reported in the literature related to YSZ films deposited on dense substrate or applied directly on the SOFC anode. However, there are not a lot of studies about the YSZ deposition on the cathode. The present work aims to obtain yttria-stabilized zirconia (YSZ), using the spray pyrolysis technique, for their application as electrolyte in solid oxide fuel cells (SOFC). The films were obtained from a precursor solution containing zirconium and yttrium salts, dissolved in ethanol and propylene glycol (1:1), this solution was sprayed onto a heated LSM porous substrate. The substrate temperature was varied in order to obtain dense and homogeneous films. After deposition, the films were heat treated, aiming to crystallize and stabilize the zirconia cubic phase. The films were characterized by Scanning Electron Microscopy (SEM), thermal analysis, X-ray diffraction and Fourier transform Infrared Spectroscopy (FT-IR).


2006 ◽  
Vol 527-529 ◽  
pp. 299-302
Author(s):  
Hideki Shimizu ◽  
Yosuke Aoyama

3C-SiC films grown on carbonized Si (100) by plasma-assisted CVD have been investigated with systematic changes in flow rate of monosilane (SiH4) and propane (C3H8) as source gases. The deposition rate of the films increased monotonously and the microstructures of the films changed from 3C-SiC single crystal to 3C-SiC polycrystal with increasing flow rate of SiH4. Increasing C3H8 keeps single crystalline structure but results in contamination of α-W2C, which is a serious problem for the epitaxial growth. To obtain high quality 3C-SiC films, the effects of C3H8 on the microstructures of the films have been investigated by reducing the concentration of C3H8. Good quality 3C-SiC single crystal on Si (100) is grown at low net flow rate of C3H8 and SiH4, while 3C-SiC single crystal on Si (111) is grown at low net flow rate of C3H8 and high net flow rate of SiH4. It is expected that 3C-SiC epitaxial growth on Si (111) will take placed at a higher deposition rate and lower substrate temperature than that on Si (100).


Sign in / Sign up

Export Citation Format

Share Document