scholarly journals THE EFFECT OF WATER STATES ON MECHANICAL PROPERTIES OF 3-DIMENSIONAL CHITOSAN MATERIALS

2010 ◽  
Vol 006 (8) ◽  
pp. 1019-1023
Author(s):  
Jia LU ◽  
Qiaoling HU ◽  
Jiacong SHEN
Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 682
Author(s):  
Eko Surojo ◽  
Aziz Harya Gumilang ◽  
Triyono Triyono ◽  
Aditya Rio Prabowo ◽  
Eko Prasetya Budiana ◽  
...  

Underwater wet welding (UWW) combined with the shielded metal arc welding (SMAW) method has proven to be an effective way of permanently joining metals that can be performed in water. This research was conducted to determine the effect of water flow rate on the physical and mechanical properties (tensile, hardness, toughness, and bending effect) of underwater welded bead on A36 steel plate. The control variables used were a welding speed of 4 mm/s, a current of 120 A, electrode E7018 with a diameter of 4 mm, and freshwater. The results show that variations in water flow affected defects, microstructure, and mechanical properties of underwater welds. These defects include spatter, porosity, and undercut, which occur in all underwater welding results. The presence of flow and an increased flow rate causes differences in the microstructure, increased porosity on the weld metal, and undercut on the UWW specimen. An increase in water flow rate causes the acicular ferrite microstructure to appear greater, and the heat-affected zone (HAZ) will form finer grains. The best mechanical properties are achieved by welding with the highest flow rate, with a tensile strength of 534.1 MPa, 3.6% elongation, a Vickers microhardness in the HAZ area of 424 HV, and an impact strength of 1.47 J/mm2.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Catarina S. P. Borges ◽  
Alireza Akhavan-Safar ◽  
Eduardo A. S. Marques ◽  
Ricardo J. C. Carbas ◽  
Christoph Ueffing ◽  
...  

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.


Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1783 ◽  
Author(s):  
Xiaofei Liu ◽  
Guang Xu ◽  
Chong Zhang ◽  
Biao Kong ◽  
Jifa Qian ◽  
...  

CORROSION ◽  
1991 ◽  
Vol 47 (4) ◽  
pp. 272-280
Author(s):  
R. J. Walter ◽  
G. G. Bentle ◽  
W. T. Chandler

Abstract The results of an experimental investigation of the effect of water vapor/hydrogen environments on the mechanical properties of niobium, B-66 niobium alloy, tantalum, and Ta-10W alloy are presented. Tensile tests were conducted on specimens of these materials in water vapor/hydrogen environments with water vapor/hydrogen mixture ratios of 1 and 3. The water vapor/hydrogen environment caused strength reductions on tantalum and Ta—WW and ductility reductions on all four materials. The degree and causes of embrittlement were a complex function of temperature.


2011 ◽  
Vol 8 (2) ◽  
pp. 551-560
Author(s):  
Baghdad Science Journal

In this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.5 MPa) and Young's modulus (5.1 GPa) as compared with other composites at (N.C). The results showed that the wet samples of sawdust composite have lowest values of weight gain (Mt %) of water (0.043%) as compared with other composites after immersion. Also it’s showed a slight decrease in values of Young's modulus for all the samples after immersion as compared with the samples at (N.C). Finally it’s showed a slight decrease in values of flexural strength for all the samples except for the composite material formed from UPE / chopped reeds which showed an increase in the value of flexural strength after immersion, where the wet samples of UPE / chopped reeds composite gained (29 MPa) as compared with the samples at (N.C).


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 782 ◽  
Author(s):  
Wei Wang ◽  
Xiaomin Guo ◽  
Defang Zhao ◽  
Liu Liu ◽  
Ruiyun Zhang ◽  
...  

Environmentally sound composites reinforced with natural fibers or particles interest many researchers and engineers due to their great potential to substitute the traditional composites reinforced with glass fibers. However, the sensitivity of natural fiber-reinforced composites to water has limited their applications. In this paper, wood powder-reinforced polypropylene composites (WPCs) with various wood content were prepared and subjected to water absorption tests to study the water absorption procedure and the effect of water absorbed in the specimens on the mechanical properties. Water soaking tests were carried out by immersion of composite specimens in a container of distilled water maintained at three different temperatures, 23, 60 and 80 °C. The results showed that the moisture absorption content was related to wood powder percentage and they had a positive relationship. The transfer process of water molecules in the sample was found to follow the Fickian model and the diffusion constant increased with elevated water temperature. In addition, tensile and bending tests of both dry and wet composite samples were conducted and the results indicated that water absorbed in composite specimens degraded their mechanical properties. The tensile strength and modulus of the composites reinforced with 15, 30, 45 wt % wood powder decreased by 5.79%, 17.2%, 32.06% and 25.31%, 33.6%, 47.3% respectively, compared with their corresponding dry specimens. The flexural strength and modulus of the composite samples exhibited a similar result. Furthermore, dynamic mechanical analysis (DMA) also confirmed that the detrimental effect of water molecules on the composite specimens.


Sign in / Sign up

Export Citation Format

Share Document